1、精选高中模拟试卷第 1 页,共 19 页五寨县第三高级中学 2018-2019 学年上学期高二数学 12 月月考试题含解析班级_ 姓名_ 分数_一、选择题1 有以下四个命题:若 = ,则 x=y若 lgx 有意义,则 x0若 x=y,则 = 若 xy,则 x2y 2则是真命题的序号为( )A B C D2 已知集合 P=x|1xb,bN,Q=x|x 23x0,xZ,若 PQ,则 b 的最小值等于( )A0 B1 C2 D33 如果对定义在 上的函数 ,对任意 ,均有 成立,则称R)(fnm 0)()(mnffnff函数 为“ 函数”.给出下列函数:)(xfH ; ; ;ln5343xxf co
2、si2)(xxf其中函数是“ 函数”的个数为( )0,|)(f HA1 B2 C 3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大4 空间直角坐标系中,点 A(2,1,3)关于点 B(1, 1,2)的对称点 C 的坐标为( )A(4,1,1) B( 1, 0,5) C(4, 3,1) D(5,3,4)5 设 Sn为等差数列a n的前 n 项和,已知在 Sn中有 S170,S 180,那么 Sn中最小的是( )AS 10 BS 9 CS 8 DS 76 已知双曲线
3、C: =1(a0,b0)的左、右焦点分别为 F1,F 2,过点 F1作直线 lx 轴交双曲线 C的渐近线于点 A,B 若以 AB 为直径的圆恰过点 F2,则该双曲线的离心率为( )A B C2 D7 如果 3 个正整数可作为一个直角三角形三条边的边长,则称这 3 个数为一组勾股数从 1,2,3,4,5中任取 3 个不同的数,则这 3 个数构成一组勾股数的概率为( )精选高中模拟试卷第 2 页,共 19 页A B C D8 定义某种运算 S=ab,运算原理如图所示,则式子+的值为( )A4 B8 C10 D139 已知 , ,则“ ”是“ ”的( ),|cos|A. 充分必要条件 B. 充分不必
4、要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.10ABC 中,A(5,0),B(5,0),点 C 在双曲线 上,则 =( )A B C D11已知函数 f(x)=3cos( 2x ),则下列结论正确的是( )A导函数为B函数 f(x)的图象关于直线 对称C函数 f(x)在区间( , )上是增函数D函数 f(x)的图象可由函数 y=3co s2x 的图象向右平移 个单位长度得到12若函数 f(x)= a(xx 3)的递减区间为( , ),则 a 的取值范围是( )Aa0 B 1a0 Ca
5、1 D0a1精选高中模拟试卷第 3 页,共 19 页二、填空题13已知双曲线 x2y2=1,点 F1,F 2为其两个焦点,点 P 为双曲线上一点,若 PF1PF2,则|PF 1|+|PF2|的值为 14设某总体是由编号为 的 20 个个体组成,利用下面的随机数表选取 个个体,选取方0,9,06法是从随机数表第 1 行的第 3 列数字开始从左到右依次选取两个数字,则选出来的第 6 个个体编号为_【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想15 = 16【南通中学 2018 届高三 10 月月考】定义在 上的函数 满足 , 为 的导函数,且对 恒成立,则 的取值范围是_.17已知函数
6、 f(x)= ,则关于函数 F(x)=f(f(x)的零点个数,正确的结论是 (写出你认为正确的所有结论的序号)k=0 时,F(x)恰有一个零点 k0 时,F (x)恰有 2 个零点k0 时,F(x)恰有 3 个零点 k0 时,F (x)恰有 4 个零点18用 1,2,3,4,5 组成不含重复数字的五位数,要求数字 4 不出现在首位和末位,数字 1,3,5 中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.三、解答题19已知2x2, 2y2,点 P 的坐标为(x,y
7、)(1)求当 x,yZ 时,点 P 满足(x 2) 2+(y 2) 24 的概率;(2)求当 x,yR 时,点 P 满足(x2) 2+(y2) 24 的概率1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238精选高中模拟试卷第 4 页,共 19 页20(本小题满分 12 分)在多面体 中,四边形 与 均为正方形, 平面ABCDEFGABCDEFCF, 平面 ,且 ABCDG24H(1)求证:平面 平面 ;AH(2)求二面角 的大小的余弦值FE21在直角坐标系 xOy 中,曲线 C1的参数方程为 C1: 为参数)
8、,曲线 C2: =1()在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,求 C1,C 2的极坐标方程;()射线 = (0)与 C1的异于极点的交点为 A,与 C2的交点为 B,求|AB|精选高中模拟试卷第 5 页,共 19 页22(本小题满分 12 分)已知椭圆 : 的左、右焦点分别为 ,过点 作垂直1C1482yx 21F、 1于轴的直线,直线 垂直于点 ,线段 的垂直平分线交 于点 .2lP2F2lM(1)求点 的轨迹 的方程;M(2)过点 作两条互相垂直的直线 ,且分别交椭圆于 ,求四边形 面积FBDA、 DCBA、 ABC的最小值.23某农户建造一座占地面积为 36m2的背面靠墙的
9、矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过 7m,墙高为 2m,鸡舍正面的造价为 40 元/m 2,鸡舍侧面的造价为 20 元/m 2,地面及其他费用合计为 1800 元(1)把鸡舍总造价 y 表示成 x 的函数,并写出该函数的定义域(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?24【南通中学 2018 届高三 10 月月考】设 , ,函数 ,其中 是自然对数的底数,曲线在 点 处的切线方程为 .()求实数 、 的值;()求证:函数 存在极小值;()若 ,使得不等式 成立,求实数 的取值范围.精选高中模拟试卷第 6 页,共 19 页精选高中模拟试卷第 7 页,共
10、19 页五寨县第三高级中学 2018-2019 学年上学期高二数学 12 月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:若 = ,则 ,则 x=y,即 对;若 lgx 有意义,则 x0,即对;若 x=y0,则 = ,若 x=y0,则不成立,即错;若 xy0,则 x2y 2,即 错故真命题的序号为故选:A2 【答案】C【解析】解:集合 P=x|1xb,bN,Q=x|x 23x0,xZ=1,2,PQ ,可得 b 的最小值为:2故选:C【点评】本题考查集合的基本运算,交集的意义,是基础题3 【答案】 B第4 【答案】C【解析】解:设 C(x,y,z),点 A(2,1,3)关于点 B
11、(1, 1,2)的对称点 C,精选高中模拟试卷第 8 页,共 19 页 ,解得 x=4,y=3,z=1,C(4,3,1 )故选:C5 【答案】C【解析】解:S 160,S 17 0, =8(a 8+a9)0, =17a9 0,a80,a 90,公差 d0Sn中最小的是 S8故选:C【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题6 【答案】D【解析】解:设 F1( c,0), F2(c,0),则 l 的方程为 x=c,双曲线的渐近线方程为 y= x,所以 A(c, c)B (c, c)AB 为直径的圆恰过点 F2F 1是这个圆的圆心AF
12、1=F1F2=2c c=2c,解得 b=2a离心率为 = =故选 D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式7 【答案】C精选高中模拟试卷第 9 页,共 19 页【解析】解:从 1,2,3,4,5 中任取 3 个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共 10 种,其中只有(3,4,5)为勾股数,故这 3 个数构成一组勾股数的概率为 故选:C8 【答案】 C【解析】解:模拟执行程序,可得,当 ab 时,则输出 a(b+1),反之,则输出 b(a+1),2
13、tan =2,lg =1,(2tan )lg =(2tan )(lg +1)=2(1+1)=0,lne=1,( ) 1 =5,lne( ) 1 =( ) 1 (lne+1)=5 (1+1)=10,+=0+10=10故选:C9 【答案】A.【解析】 ,设 , ,|cos|cos|cs()|cosfxx,显然 是偶函数,且在 上单调递增,故 在 上单调递减, ,()fx0,()fx,0()|ff故是充分必要条件,故选 A.10【答案】D【解析】解:ABC 中,A( 5,0),B(5,0),点 C 在双曲线 上,A 与 B 为双曲线的两焦点,根据双曲线的定义得:|ACBC|=2a=8,|AB|=2c
14、=10 ,则 = = = 故选:D【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目11【答案】B精选高中模拟试卷第 10 页,共 19 页【解析】解:对于 A,函数 f(x)=3sin (2x )2=6sin(2x ),A 错误;对于 B,当 x= 时,f ( )=3cos(2 ) =3 取得最小值,所以函数 f(x)的图象关于直线 对称,B 正确;对于 C,当 x( , )时,2x ( , ),函数 f(x)=3cos(2x )不是单调函数,C 错误;对于 D,函数 y=3co s2x 的图象向右平移 个单位长度,得到函数 y=3co s2(x )=
15、3co s(2x )的图象,这不是函数 f(x)的图象,D 错误故选:B【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目12【答案】A【解析】解:函数 f(x)= a(xx 3)的递减区间为( , )f(x)0,x( , )恒成立即:a(1 3x2)0,x( , )恒成立13x 20 成立a0故选 A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决二、填空题13【答案】 【解析】解:PF 1PF 2,|PF 1|2+|PF2|2=|F1F2|2精选高中模拟试卷第 11 页,共 19 页双曲线方程为 x2y2=1,a 2=b2=1,c 2=a2+
16、b2=2,可得 F1F2=2|PF 1|2+|PF2|2=|F1F2|2=8又P 为双曲线 x2y2=1 上一点,|PF 1|PF2|=2a=2,(|PF 1|PF2|) 2=4因此(|PF 1|+|PF2|) 2=2(|PF 1|2+|PF2|2) (|PF 1|PF2|) 2=12|PF 1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题14【答案】19【解析】由题意可得,选取的这 6 个个体分别为 18,07,17,16,09,19,故选出的第 6 个个体编号为 1915【答案】
17、 2 【解析】解: =2+lg1002=2+22=2,故答案为:2【点评】本题考查了对数的运算性质,属于基础题16【答案】精选高中模拟试卷第 12 页,共 19 页【解析】 点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简
18、洁明快的思路,有着非凡的功效。17【答案】 【解析】解:当 k=0 时, ,当 x0 时,f(x )=1,则 f(f (x)=f(1)= =0,此时有无穷多个零点,故错误;当 k0 时,()当 x0 时,f(x)=kx+11,此时 f(f (x)=f(kx+1)= ,令 f(f(x)=0,可得:x=0;()当 0x1 时, ,此时f(f(x)=f( )= ,令 f(f (x)=0,可得:x= ,满足;精选高中模拟试卷第 13 页,共 19 页()当 x1 时, ,此时 f(f (x)=f( )=k +10,此时无零点综上可得,当 k0 时,函数有两零点,故正确;当 k0 时,()当 x 时,k
19、x+10,此时 f(f(x)=f(kx+1)=k(kx+1)+1,令 f(f(x)=0,可得: ,满足;()当 时,kx+10,此时 f(f(x)=f(kx+1)= ,令 f(f(x)=0,可得:x=0,满足;()当 0x1 时, ,此时 f(f(x)=f( )= ,令 f(f(x)=0,可得:x= ,满足;()当 x1 时, ,此时 f(f (x)=f( )=k +1,令 f(f(x)=0 得:x=1,满足;综上可得:当 k0 时,函数有 4 个零点故错误,正确故答案为:【点评】本题考查复合函数的零点问题考查了分类讨论和转化的思想方法,要求比较高,属于难题18【答案】48【解析】三、解答题1
20、9【答案】 【解析】解:如图,点 P 所在的区域为长方形 ABCD 的内部(含边界),精选高中模拟试卷第 14 页,共 19 页满足(x2) 2+(y2) 24 的点的区域为以( 2,2)为圆心, 2 为半径的圆面(含边界)(1)当 x,yZ 时,满足2x2, 2y2 的点有 25 个,满足 x,yZ,且(x2) 2+( y2) 24 的点有 6 个,依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);所求的概率 P= (2)当 x,yR 时,满足2x2, 2y2 的面积为:44=16,满足(x2) 2+(y2) 24,且 2x2,2y2 的面积为: =,所求的概率
21、P= = 【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档20【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想精选高中模拟试卷第 15 页,共 19 页 平面 ,平面 平面 5 分GHAGHEF精选高中模拟试卷第 16 页,共 19 页21【答案】 【解析】解:()曲线 为参数)可化为普通方程:(x1) 2+y2=1,由 可得曲线 C1的极坐标方程为 =2cos,曲线 C2的极坐标方程为 2(1+sin 2)=2()射线 与
22、曲线 C1的交点 A 的极径为 ,射线 与曲线 C2的交点 B 的极径满足 ,解得 ,精选高中模拟试卷第 17 页,共 19 页所以 22【答案】(1) ;(2) .xy8964【解析】试题分析:(1)求得椭圆的焦点坐标,连接 ,由垂直平分线的性质可得 ,运用抛物线的2MF2MFP定义,即可得到所求轨迹方程;(2)分类讨论:当 或 中的一条与轴垂直而另一条与轴重合时,此时ACBD四边形 面积 当直线 和 的斜率都存在时,不妨设直线 的方程为 ,ABCD2bS ACxky则直线 的方程为 分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得 ,1xky AC利用四边形 面积 即可得到关于斜率
23、的式子,再利用配方和二次函数的最值求2法,即可得出(2)当直线 的斜率存在且不为零时,直线 的斜率为, , ,则直线 的斜率为ACAC),(1yx),(2CBD,直线 的方程为 ,联立 ,得 .111k1)2(xky48)2(2yxk 0822 kxk , .2218kx218.由于直线 的斜率为 ,用 代换上式中的。可1)(34)(| 212 kxxAC BDk1得 .3|2kBD ,四边形 的面积 .ABCD)12(6|2kACS由于 , ,当且仅当 ,即2222 )1(3)1()()1( kkk 94S12k时取得等号.1k易知,当直线 的斜率不存在或斜率为零时,四边形 的面积 .BD8
24、精选高中模拟试卷第 18 页,共 19 页综上,四边形 面积的最小值为 .ABCD964考点:椭圆的简单性质1【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得 ,运用抛物线的定义,即可得所求的|2MFP轨迹方程.第二问分类讨论,当 或 中的一条与轴垂直而另一条与轴重合时,四边形面积为 .当直线B 2b和 的斜率都存在时,分别设出 的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得ABDAC,从而利用四边形的面积公式求最值.DC23【答案】 【解析】解:(1) = 定义域是(0,7(2) ,当且仅当 即 x=6 时取=y8012+1800=2760答:当侧面长度 x=6 时,总造价最
25、低为 2760 元24【答案】() ;()证明见解析;() .【解析】试题分析:()利用导函数研究函数的切线,得到关于实数 a,b 的方程组,求解方程组可得 ;()结合()中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;试题解析:() , ,由题设得 , ;()由()得 , , ,函数 在是增函数, , ,且函数 图像在 上不间断,精选高中模拟试卷第 19 页,共 19 页,使得 ,结合函数 在 是增函数有:)递减 极小值 递增函数 存在极小值 ;() ,使得不等式 成立,即 ,使得不等式 成立(*),令 , ,则 ,结合()得 ,其中 ,满足 ,即 , , , , , , 在 内单调递增, ,结合(*)有 ,即实数 的取值范围为