1、精选高中模拟试卷第 1 页,共 17 页洋县高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若集合 M=y|y=2x,x1,N=x| 0,则 NM( )A(11, B(0,1 C1,1 D(1,22 抛物线 y=x2 上的点到直线 4x+3y8=0 距离的最小值是( )A B C D33 设 为双曲线 的右焦点,若 的垂直平分线与渐近线在第一象限内的交点到F21(0,)xyabOF另一条渐近线的距离为 ,则双曲线的离心率为( )|OFA B C D32232【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想4 已
2、知 m,n 为异面直线, m平面 ,n平面 直线 l 满足 lm,l n,l ,l,则( )A 且 l B 且 lC 与 相交,且交线垂直于 l D 与 相交,且交线平行于 l5 偶函数 f(x)的定义域为 R,若 f(x+2 )为奇函数,且 f(1)=1 ,则 f(89)+f(90)为( )A2 B 1 C0 D16 函数 g(x)是偶函数,函数 f(x)=g (x m),若存在 ( , ),使 f(sin)=f(cos),则实数 m 的取值范围是( )A( ) B( , C( ) D( 7 已知平面 =l,m 是 内不同于 l 的直线,那么下列命题中错误 的是( )A若 m,则 ml B若
3、 ml,则 m C若 m ,则 ml D若 ml,则 m8 过点 P(2,2)作直线 l,使直线 l 与两坐标轴在第二象限内围成的三角形面积为 8,这样的直线 l 一共有( )A3 条 B2 条 C1 条 D0 条精选高中模拟试卷第 2 页,共 17 页9 某市重点中学奥数培训班共有 14 人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是 88,乙组学生成绩的中位数是 89,则 的值是( )mnA10 B11 C12 D13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力10已知向量 =(1, ), =( ,x)共线
4、,则实数 x 的值为( )A1 B C tan35 Dtan3511一个算法的程序框图如图所示,若运行该程序后输出的结果为 ,则判断框中应填入的条件是( )Ai5? Bi4? Ci4? Di5?12函数 f(x)=sin x+acosx(a0, 0)在 x= 处取最小值2,则 的一个可能取值是( )A2 B3 C7 D9二、填空题13已知定义域为(0,+)的函数 f(x)满足:(1)对任意 x(0,+),恒有 f(2x)=2f(x)成立;(2)当 x(1,2时,f(x) =2x给出如下结论:对任意 mZ,有 f(2 m) =0; 函数 f(x)的值域为0,+);存在 nZ,使得 f(2 n+1
5、)=9;“函数 f(x)在区间(a,b)上单调递减”的充要条件是“ 存在 kZ,使得(a,b)(2 k,2 k+1)” ;其中所有正确结论的序号是 精选高中模拟试卷第 3 页,共 17 页14图中的三个直角三角形是一个体积为 20的几何体的三视图,则 _.h15不等式 的解为 16如图所示,在三棱锥 CABD 中,E、F 分别是 AC 和 BD 的中点,若 CD=2AB=4,EFAB,则 EF 与 CD所成的角是 17命题“ (0,)2x, sin1x”的否定是 18已知 f(x)= ,则 f( )+f( )等于 三、解答题19已知函数 f(x)=Asin ( x+)(x R,A 0,0,0
6、)图象如图,P 是图象的最高点,Q 为图象与 x 轴的交点,O 为原点且 |OQ|=2,|OP|= ,|PQ|= ()求函数 y=f(x)的解析式;()将函数 y=f(x)图象向右平移 1 个单位后得到函数 y=g(x)的图象,当 x0,2时,求函数 h(x)=f(x)g(x)的最大值精选高中模拟试卷第 4 页,共 17 页20已知圆 C:(x1) 2+y2=9 内有一点 P(2,2),过点 P 作直线 l 交圆 C 于 A,B 两点(1)当 l 经过圆心 C 时,求直线 l 的方程;(2)当弦 AB 被点 P 平分时,求直线 l 的方程21如图,在三棱锥 ABCD 中,AB平面 BCD,BC
7、CD ,E,F,G 分别是 AC,AD,BC 的中点求证:(I)AB平面 EFG;(II)平面 EFG平面 ABC22等比数列a n的各项均为正数,且 2a1+3a2=1,a 32=9a2a6,()求数列a n的通项公式;()设 bn=log3a1+log3a2+log3an,求数列 的前 n 项和精选高中模拟试卷第 5 页,共 17 页23如图,A 地到火车站共有两条路径 和 ,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有 40 分钟和 50 分钟时间用于赶往火车站。(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径
8、?(2)用 X 表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X 的分布列和数学期望 。24已知等差数列a n满足 a2=0,a 6+a8=10(1)求数列a n的通项公式;(2)求数列 的前 n 项和精选高中模拟试卷第 6 页,共 17 页精选高中模拟试卷第 7 页,共 17 页洋县高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:由 M 中 y=2x,x1,得到 0y2,即 M=(0,2,由 N 中不等式变形得:(x1)(x+1)0,且 x+10,解得:1x1,即 N=(1,1 ,则 MN=(0,1,故选:
9、B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键2 【答案】A【解析】解:由 ,得 3x24x+8=0=(4 ) 2438=800所以直线 4x+3y8=0 与抛物线 y=x2 无交点设与直线 4x+3y8=0 平行的直线为 4x+3y+m=0联立 ,得 3x24xm=0由=( 4) 243(m)=16+12m=0,得 m= 所以与直线 4x+3y8=0 平行且与抛物线 y=x2 相切的直线方程为 4x+3y =0所以抛物线 y=x2 上的一点到直线 4x+3y8=0 的距离的最小值是 = 故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行
10、线间的距离公式,是中档题3 【答案】B【解析】精选高中模拟试卷第 8 页,共 17 页4 【答案】D【解析】解:由 m平面 ,直线 l 满足 lm,且 l,所以 l,又 n平面 ,ln,l ,所以 l 由直线 m,n 为异面直线,且 m平面 ,n平面 ,则 与 相交,否则,若 则推出 mn,与 m,n 异面矛盾故 与 相交,且交线平行于 l故选 D【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题5 【答案】D【解析】解:f(x+2 )为奇函数,f( x+2)= f(x+2 ),f(x)是偶函数
11、,f( x+2)= f(x+2 )=f (x 2),即f(x+4 )=f( x),则 f(x+4)=f(x),f (x+8)= f(x+4)=f(x),即函数 f(x)是周期为 8 的周期函数,则 f(89)=f(88+1 )=f(1)=1,f(90)=f(88+2 )=f(2),由f(x+4 )=f( x),得当 x=2 时,f(2)=f(2)=f(2),则 f(2)=0 ,故 f(89)+f(90)=0+1=1,故选:D精选高中模拟试卷第 9 页,共 17 页【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键6 【答案】A【解析】解:函数 g(x)是偶
12、函数,函数 f(x)=g (xm),函数 f(x)关于 x=m 对称,若 ( , ),则 sincos ,则由 f(sin) =f(cos ),则 =m,即 m= = (sin + cos)= sin(+ )当 ( , ),则 + ( , ),则 sin( + ) ,则 m ,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键7 【答案】D【解析】【分析】由题设条件,平面 =l,m 是 内不同于 l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线
13、线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上 D 选项中的命题是错误的故选 D8 【答案】C【解析】解:假设存在过点 P(2,2)的直线 l,使它与两坐标轴围成的三角形的面积为 8,设直线 l 的方程为: ,则 精选高中模拟试卷第 10 页,共 17 页即 2a2b=ab直线 l 与两坐标轴在第二象限内围成的三角形面积 S= ab=8,即 ab=16,联立 ,解得:a= 4,b=4直线
14、l 的方程为: ,即 xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题9 【答案】C【解析】由题意,得甲组中 ,解得 乙组中 ,78469209587m3892所以 ,所以 ,故选 Cn12mn10【答案】B【解析】解:向量 =(1, ), =( ,x)共线,x= = = = ,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题11【答案】 B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1 ,s=满足条件,i=3,sum=2 ,s= +满足条件,i=4,sum=3 ,s
15、= + +精选高中模拟试卷第 11 页,共 17 页满足条件,i=5,sum=4 ,s= + + + =1 + + + = 由题意,此时不满足条件,退出循环,输出 s 的 ,则判断框中应填入的条件是 i4故选:B【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件 循环的条件 变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误12【答案】C【解析】解:函数 f(x)=sinx+acosx(a0, 0 )在 x= 处取最小值 2,sin +acos = =2,a=
16、,f (x)=sinx+ cosx=2sin(x+ )再根据 f( )=2sin ( + )=2,可得 + =2k+ ,kZ,=12k+7 ,k=0 时,=7,则 的可能值为 7,故选:C【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题二、填空题13【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0 f(1)= f(2) =0f(2x)=2f(x),f(2 kx)=2 kf(x)f(2 m)=f(22 m1)=2f(2 m1)=2 m1f(2)=0 ,故正确;设 x(2,4时,则 x(1,2,f (x)=2f( )=4 x0若 x(4,8时,则 x(2,4 ,f
17、(x)=2f( )=8x0一般地当 x(2 m,2 m+1),精选高中模拟试卷第 12 页,共 17 页则 (1,2,f(x)=2 m+1x0,从而 f(x)0,+),故正确;由知当 x(2 m,2 m+1), f(x)=2 m+1x0,f(2 n+1)=2 n+12n1=2n1,假设存在 n 使 f(2 n+1)=9,即 2n1=9,2 n=10,nZ,2 n=10 不成立,故错误;由知当 x(2 k,2 k+1)时,f(x)=2 k+1x 单调递减,为减函数,若(a,b)(2 k,2 k+1)” ,则“ 函数 f(x)在区间(a,b)上单调递减” ,故正确故答案为:14【答案】【解析】试题
18、分析:由三视图可知该几何体为三棱锥,其中侧棱 底面 ,且 为直角三角形,且VABCA,所以三棱锥的体积为 ,解得 .5,6ABVhC1562032h4h考点:几何体的三视图与体积.15【答案】 x|x1 或 x0 【解析】解:即即 x(x1)0解得 x1 或 x0故答案为x|x1 或 x0精选高中模拟试卷第 13 页,共 17 页【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法注意不等式的解以解集形式写出16【答案】 30 【解析】解:取 AD 的中点 G,连接 EG,GF 则 EG DC=2,GF AB=1,故GEF 即为 EF 与 CD 所成的角又FEAB
19、FEGF在 RtEFG 中 EG=2,GF=1 故 GEF=30故答案为:30【点评】此题的关键是作出 AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了17【答案】 0,2x, sin1【解析】试题分析:“(,)x, six”的否定是 0,2x, sin1考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;对原命题的结论进行否定.(2)判定全称命题“xM,p(x)”是真命题,需要对集合 M 中的每个元素 x,证明 p(x)成立;要判定一个全称命题是假命题,只要举出
20、集合M 中的一个特殊值 x0,使 p(x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个 xx 0,使 p(x 0)成立即可,否则就是假命题.18【答案】 4 【解析】解:由分段函数可知 f( )=2 = 精选高中模拟试卷第 14 页,共 17 页f( )=f( +1)=f( )=f( )=f( )=2 = ,f( ) +f( )= + 故答案为:4三、解答题19【答案】 【解析】解:()由余弦定理得 cosPOQ= = ,sinPOQ= ,得 P 点坐标为( ,1),A=1, =4(2 ),= 由 f( )=sin( +)=1 可得 = ,y=f(x) 的解析式为
21、f(x)=sin( x+ )()根据函数 y=Asin(x+)的图象变换规律求得 g(x)=sin x,h(x)=f(x)g(x)=sin( x+ ) sin x= + sin xcos x = + sin = sin( )+ 当 x0,2 时, , ,当 ,即 x=1 时,h max(x)= 【点评】本题主要考查由函数 y=Asin(x+)的部分图象求函数的解析式,函数 y=Asin(x+)的图象变换规律,正弦函数的定义域和值域,属于中档题20【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线 l 的方程;(2)当弦 AB 被点 P 平分时,求出直线的斜率,
22、即可写出直线 l 的方程;【解答】解:(1)已知圆 C:(x1) 2+y2=9 的圆心为 C(1,0),因为直线 l 过点 P,C,所以直线 l 的斜率为 2,所以直线 l 的方程为 y=2(x1),即 2xy2=0 (2)当弦 AB 被点 P 平分时,lPC,直线 l 的方程为 ,即 x+2y6=0精选高中模拟试卷第 15 页,共 17 页21【答案】 【解析】证明:(I)在三棱锥 ABCD 中,E,G 分别是 AC,BC 的中点所以 ABEG因为 EG平面 EFG,AB平面 EFG所以 AB平面 EFG(II)因为 AB平面 BCD,CD平面 BCD所以 ABCD 又 BCCD 且 ABB
23、C=B所以 CD平面 ABC又 E,F 分别是 AC,AD,的中点所以 CDEF所以 EF平面 ABC又 EF平面 EFG,所以平面平面 EFG平面 ABC【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键22【答案】【解析】解:()设数列a n的公比为 q,由 a32=9a2a6 得 a32=9a42,所以 q2= 由条件可知各项均为正数,故 q= 由 2a1+3a2=1 得 2a1+3a1q=1,所以 a1= 故数列a n的通项式为 an= ()b n= + + =(1+2+ +n)= ,故 = =2( )则 + + =2= ,所以数列 的前 n 项和为 精选高中模
24、拟试卷第 16 页,共 17 页【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前 n 项和的公式,会进行数列的求和运算,是一道中档题23【答案】【解析】(1)A i表示事件“甲选择路径 Li时,40 分钟内赶到火车站”,B i表示事件“乙选择路径 Li时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率可得P(A 1)=0。1+0。2+0 。3=0。6,P(A 2)=0。1+0 。 4=0。5,P(A 1) P(A 2), 甲应选择 LiP(B 1)=0。1+0 。2+0。3+0。2=0。8,P (B 2)=0 。1+0 。4+0。4=0。9 ,P(B 2) P(B 1), 乙应选择 L2。(2)A,B 分别表示针对( )的选择方案,甲、乙在各自允许的时间内赶到火车站,由()知,又由题意知,A,B 独立,24【答案】 【解析】解:(1)设等差数列a n的公差为 d,a 2=0, a6+a8=10 ,解得 ,a n1+(n1) =n2(2) = 数列 的前 n 项和 Sn=1+0+ + + ,= +0+ + + , =1+ + =2+ = ,S n= 精选高中模拟试卷第 17 页,共 17 页