1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)宿豫区高中 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 下列命题中正确的是( )A复数 a+bi 与 c+di 相等的充要条件是 a=c
3、 且 b=dB任何复数都不能比较大小C若 = ,则 z1=z2D若|z 1|=|z2|,则 z1=z2或 z1=2 已知 i 为虚数单位,则复数 所对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限3 等比数列a n中,a 3,a 9是方程 3x211x+9=0 的两个根,则 a6=( )A3 B C D以上皆非4 我国古代名著九章算术用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”当输入 a6 102,b2 016 时,输出的 a 为( )A6B9C12D185 已知向量 , ,若 ,则
4、实数 ( )(,1)at(2,1)bt|abtA. B. C. D. 22由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时
5、,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力6 自圆 : 外一点 引该圆的一条切
6、线,切点为 ,切线的长度等于点 到C22(3)(4)xy(,)PxyQP原点 的长,则点 轨迹方程为( )OPA B C D810y8610x6821068210xy【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力7 将正方形的每条边 8 等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372 B2024 C3136 D44958 极坐标系中,点 P,Q 分别是曲线 C1: =1 与曲线 C2:=2 上任意两点,则|PQ|的最小值为( )A1 B C D29 抛物线 y=8x2的准线方程是( )Ay= By=2
7、 Cx= Dy= 210已知 a=log23,b=8 0.4,c=sin ,则 a,b,c 的大小关系是( )Aabc Ba cb Cba c Dcba11过抛物线 y2=4x 的焦点作直线交抛物线于 A(x 1,y 1),B(x 2,y 2),若 x1+x2=6,则|AB|为( )A8 B10 C6 D412下面是关于复数 的四个命题:p1:|z|=2,p2:z 2=2i,p3:z 的共轭复数为1+i,p4:z 的虚部为 1其中真命题为( )Ap 2,p 3 Bp 1,p 2 Cp 2,p 4 Dp 3,p 4二、填空题13【盐城中学 2018 届高三上第一次阶段性考试】已知函数 f(x)=
8、 ,若函数210 ()xe由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变
9、小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)y=f(f (x)a)1 有三个零点,则 a 的取值范围是_14给出下列命题:(1)命题 p:;菱形的对角线互相垂直平分,命题 q:菱形的对角线相等;则
10、pq 是假命题(2)命题“若 x24x+3=0,则 x=3”的逆否命题为真命题(3)“ 1x3” 是“x 24x+30” 的必要不充分条件(4)若命题 p:xR,x 2+4x+50,则p: 其中叙述正确的是 (填上所有正确命题的序号)15已知 a= ( cosxsinx)dx,则二项式(x 2 ) 6展开式中的常数项是 16定义在 上的函数 满足: , ,则不等式 (其)(f 1)(xf4)0(f 3)(xxef中为自然对数的底数)的解集为 .17在ABC 中,角 A,B, C 的对边分别为 a,b,c,sinA ,sinB ,sinC 依次成等比数列,c=2a 且 =24,则ABC 的面积是
11、 18把函数 y=sin2x 的图象向左平移 个单位长度,再把所得图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得函数图象的解析式为 三、解答题19已知函数 f(x)=4 xa2x+1+a+1,aR (1)当 a=1 时,解方程 f(x )1=0;(2)当 0x1 时,f(x) 0 恒成立,求 a 的取值范围;(3)若函数 f(x)有零点,求实数 a 的取值范围20某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取 40 名学生的测试成绩,整理数据并按分数段 , , , , , 进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下)由于玻
12、璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛
13、A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)()体育成绩大于或等于 70 分的学生常被称为“体育良好”已知该校高一年级有 1000 名学生,试估计高一年级中“体育良好”的学生人数;()为分析学生平时的体育活动情况,现从体育成绩在
14、和 的样本学生中随机抽取 2 人,求在抽取的 2 名学生中,至少有 1 人体育成绩在 的概率;()假设甲、乙、丙三人的体育成绩分别为 ,且分别在 , , 三组中,其中当数据 的方差 最大时,写出 的值(结论不要求证明)(注: ,其中 为数据 的平均数)21已知向量 =(x, y), =(1,0),且( + )( )=0 (1)求点 Q(x,y)的轨迹 C 的方程;(2)设曲线 C 与直线 y=kx+m 相交于不同的两点 M、N,又点 A(0,1),当|AM|=|AN|时,求实数 m 的取值范围由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”)
15、 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,
16、发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)22已知函数 f(x)=log 2(m+ )(m R,且 m0)(1)求函数 f(x)的定义域;(2)若函数 f(x)在(4,+)上单调递增,求 m 的取值范围23(本小题 12 分)在多面体 中,四边形 与 是边长均为 正方形, 平面ABCDEFGABCDEFaCF, 平面 ,且
17、 ABCDG24H(1)求证:平面 平面 ;H(2)若 ,求三棱锥 的体积4a【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想24函数 f(x)=Asin ( x+)(A0, 0,| )的一段图象如图所示 (1)求 f(x)的解析式;(2)求 f(x)的单调减区间,并指出 f(x)的最大值及取到最大值时 x 的集合;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的
18、蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座
19、的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(3)把 f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3
20、)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或
21、“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)宿豫区高中 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:A未注明 a,b,c,dRB实数是复数,实数能比较大小C = ,则 z1=z2,正确;Dz 1与 z2的模相等,符合条件的 z1,z 2有无数多个,如单位圆上的点对应的复数的模都是 1,因此不正确故选:C2 【答案】A【解析】解: = =1+i,其对应的点为(1,1),故选:A3 【答案】C【解析】解:a 3,a 9是方程 3x211x+9=0 的两个根
22、,a 3a9=3,又数列a n是等比数列,则 a62=a3a9=3,即 a6= 故选 C4 【答案】【解析】选 D.法一:6 102 2 016354,2 016543718,54183,18 是 54 和 18 的最大公约数,输出的 a18,选 D.法二:a6 102,b2 016,r54,a2 016,b54,r18,a54,b18,r0.输出 a18,故选 D.5 【答案】B【解析】由 知, , ,解得 ,故选 B.|ab(2)10abt1t6 【答案】D【解析】由切线性质知 ,所以 ,则由 ,得,PQC2PCQPO由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选
23、择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡
24、烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置),化简得 ,即点 的轨迹方程,故选 D,222(3)(4)xyxy68210xyP7 【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得
25、【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有 4 种方法,再在选出的三条边上各选一点,有 73种方法这类三角形共有 473=1372 个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有 4 种方法,再在这条边上任取两点有 21 种方法,然后在其余的 21 个分点中任取一点作为第三个顶点这类三角形共有42121=1764 个综上可知,可得不同三角形的个数为 1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题8 【答案】A【解析
26、】解:极坐标系中,点 P,Q 分别是曲线 C1: =1 与曲线 C2:=2 上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1故选:A【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查9 【答案】A由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究
27、平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E
28、 的像的光路图。(D 点为小明眼睛所在位置)【解析】解:整理抛物线方程得 x2= y,p=抛物线方程开口向下,准线方程是 y= ,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置10【答案】B【解析】解:1log 232,0 8 0.4=21.2 ,sin =sin ,acb,故选:B【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键11【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是 x=1,抛物线 y2=4x 的焦点作直线交抛物线于 A(x 1,y 1)B(x 2,y 2)两点|AB|=2(
29、x 1+x2),又 x1+x2=6|AB|=2(x 1+x2)=8故选 A12【答案】C【解析】解:p 1:|z|= = ,故命题为假;p2:z 2= = =2i,故命题为真;,z 的共轭复数为 1i,故命题 p3为假; ,p 4:z 的虚部为 1,故命题为真故真命题为 p2,p 4由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛
30、 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图
31、乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)故选:C【点评】本题考查命题真假的判定,考查复数知识,考查学生的计算能力,属于基础题二、填空题13【答案】 13e, )【解析】当 x0 时,由 f(x )1=0 得 x2+2x+1=1,得 x=2 或 x=0,当 x0 时,由 f(x)1=0 得 ,得 x=0,10xe由,y=f(f(x)a)1=0 得 f(x)a=0 或 f(x)a=2,即 f(x)=a ,f(x)=a2,作出函数 f(x)的图象如图:y= 1(x0),ey= ,当 x(0,1)时,y0,函数是增函数,x(1,+ )时,
32、y0,函数是减函数,xx=1 时,函数取得最大值: ,e当 1a2 时,即 a (3,3+ )时,y=f(f(x)a)1 有 4 个零点,e当 a2=1+ 时,即 a=3+ 时则 y=f(f(x)a)1 有三个零点,当 a3+ 时,y=f(f(x) a)1 有 1 个零点e当 a=1+ 时,则 y=f(f(x)a )1 有三个零点,1由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡
33、烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“
34、向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)当 时,即 a(1+ ,3)时,y=f(f (x)a)1 有三个零点1 2ae1e综上 a ,函数有 3 个零点3, )故答案为: 1e, )点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函 数的图象,然后数形结合求解14【答案】 (4
35、) 【解析】解:(1)命题 p:菱形的对角线互相垂直平分,为真命题命题 q:菱形的对角线相等为假命题;则 pq 是真命题,故(1)错误,(2)命题“若 x24x+3=0,则 x=3 或 x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由 x24x+30 得 1x3,则“1x3”是“x 24x+3 0”的充要条件,故(3)错误,(4)若命题 p:xR,x 2+4x+50,则p: 正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题15【答案】 240 【解析】解:a
36、= ( cosxsinx)dx=( sinx+cosx) =11=2,则二项式(x 2 ) 6=(x 2+ ) 6展开始的通项公式为 Tr+1= 2rx123r,令 123r=0,求得 r=4,可得二项式(x 2 ) 6展开式中的常数项是 24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题16【答案】 ),0(【解析】由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应
37、该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明
38、只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得 ,结合要求的不等式可知在不等式两边同时乘以 ,即01xf xe,因此构造函数 ,求导利用函数的单调性解不等式.另外本题也可xxxeffe xxefg以构造满足前提的特殊函数,比如令 也可以求解.14f17【答案】 4 【解析】解:sinA,sinB,
39、sinC 依次成等比数列,sin2B=sinAsinC,由正弦定理可得:b 2=ac,c=2a,可得:b= a,cosB= = = ,可得:sinB= = , =24,可得:accosB= ac=24,解得:ac=32,SABC= acsinB= =4 故答案为:4 18【答案】 y=cosx 【解析】解:把函数 y=sin2x 的图象向左平移 个单位长度,得 ,即 y=cos2x 的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),得到 y=cosx 的图象;故答案为:y=cosx三、解答题19【答案】 【解析】解:(1)a=1 时,f(x)=4 x22x+2
40、,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改
41、变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)f(x) 1=(2 x) 22(2 x)+1= (2 x1) 2=0,2x=1,解得:x=0 ;(2)4 xa(2 x+11)+10 在(0,1)恒成立,a(22 x1)4 x+
42、1,2x+11,a ,令 2x=t(1, 2),g(t)= ,则 g(t)= = =0,t=t0,g(t)在( 1,t 0)递减,在(t 0,2)递增,而 g(1)=2,g(2)= ,a2;(3)若函数 f(x)有零点,则 a= 有交点,由(2)令 g(t)=0,解得: t= ,故 a 【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题20【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】()由折线图,知样本中体育成绩大于或等于 70 分的学生有 人,所以该校高一年级学生中,“体育良好”的学生人数大约有人 ()设 “至少有 1 人体育成绩在 ”为事
43、件 ,记体育成绩在 的数据为 , ,体育成绩在 的数据为 , , ,则从这两组数据中随机抽取 2 个,所有可能的结果有 10 种,它们是: , , , , , , , , 而事件 的结果有 7 种,它们是: , , , , , , ,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏