收藏 分享(赏)

MATLAB软件第2章.ppt

上传人:精品资料 文档编号:8506561 上传时间:2019-06-30 格式:PPT 页数:122 大小:1.43MB
下载 相关 举报
MATLAB软件第2章.ppt_第1页
第1页 / 共122页
MATLAB软件第2章.ppt_第2页
第2页 / 共122页
MATLAB软件第2章.ppt_第3页
第3页 / 共122页
MATLAB软件第2章.ppt_第4页
第4页 / 共122页
MATLAB软件第2章.ppt_第5页
第5页 / 共122页
点击查看更多>>
资源描述

1、第2章 matlab数值计算,2.1 MATLAB矩阵及其运算 1 变量和数据操作 2 MATLAB矩阵 3 MATLAB运算 4 矩阵分析,1 变量和数据操作,变量与赋值 1变量命名 在MATLAB 中,变量名是以字母开头,后接字母、数字或下划线的字符序列,最多63个字符。在MATLAB中,变量名区分字母的大小写。,2赋值语句 (1) 变量=表达式 (2) 表达式 其中表达式是用运算符将有关运算量连接起来的式子,其结果是一个矩阵。,例2-1 计算表达式的值,并显示计算结果。 在MATLAB命令窗口输入命令: x=1+2i; y=3-sqrt(17); z=(cos(abs(x+y)-sin(

2、78*pi/180)/(x+abs(y) 其中pi和i都是MATLAB预先定义的变量,分别代表代表圆周率和虚数单位。 输出结果是: z = -0.3488 + 0.3286i,2 预定义变量,在MATLAB工作空间中,还驻留几个由系统本身定义的变量。例如,用pi表示圆周率的近似值,用i,j表示虚数单位。 预定义变量有特定的含义,在使用时,应尽量避免对这些变量重新赋值。,3 内存变量的管理 1内存变量的删除与修改 MATLAB工作空间窗口专门用于内存变量的管理。在工作空间窗口中可以显示所有内存变量的属性。当选中某些变量后,再单击Delete按钮,就能删除这些变量。当选中某些变量后,再单击Open

3、按钮,将进入变量编辑器。通过变量编辑器可以直接观察变量中的具体元素,也可修改变量中的具体元素。,clear命令用于删除MATLAB工作空间中的变量。who和whos这两个命令用于显示在MATLAB工作空间中已经驻留的变量名清单。who命令只显示出驻留变量的名称,whos在给出变量名的同时,还给出它们的大小、所占字节数及数据类型等信息。,2内存变量文件 利用MAT文件可以把当前MATLAB工作空间中的一些有用变量长久地保留下来,扩展名是.mat。MAT文件的生成和装入由save和load命令来完成。常用格式为: save 文件名 变量名表 -append-ascii load 文件名 变量名表

4、-ascii,其中,文件名可以带路径,但不需带扩展名.mat,命令隐含一定对.mat文件进行操作。变量名表中的变量个数不限,只要内存或文件中存在即可,变量名之间以空格分隔。当变量名表省略时,保存或装入全部变量。-ascii选项使文件以ASCII格式处理,省略该选项时文件将以二进制格式处理。save命令中的-append选项控制将变量追加到MAT文件中。,4 MATLAB常用数学函数 MATLAB提供了许多数学函数,函数的自变量规定为矩阵变量,运算法则是将函数逐项作用于矩阵的元素上,因而运算的结果是一个与自变量同维数的矩阵。 函数使用说明: (1) 三角函数以弧度为单位计算。 (2) abs函数

5、可以求实数的绝对值、复数的模、字符串的ASCII码值。 (3) 用于取整的函数有fix、floor、ceil、round,要注意它们的区别。 (4) rem与mod函数的区别。rem(x,y)和mod(x,y)要求x,y必须为相同大小的实矩阵或为标量。,5 数据的输出格式 MATLAB用十进制数表示一个常数,具体可采用日常记数法和科学记数法两种表示方法。 在一般情况下,MATLAB内部每一个数据元素都是用双精度数来表示和存储的。数据输出时用户可以用format命令设置或改变数据输出格式。format命令的格式为: format 格式符 其中格式符决定数据的输出格式,2 MATLAB矩阵,矩阵的

6、建立 1直接输入法 最简单的建立矩阵的方法是从键盘直接输入矩阵的元素。具体方法如下:将矩阵的元素用方括号括起来,按矩阵行的顺序输入各元素,同一行的各元素之间用空格或逗号分隔,不同行的元素之间用分号分隔。,2利用M文件建立矩阵 对于比较大且比较复杂的矩阵,可以为它专门建立一个M文件。下面通过一个简单例子来说明如何利用M文件创建矩阵。,例2-2 利用M文件建立MYMAT矩阵。 (1) 启动有关编辑程序或MATLAB文本编辑器,并输入待建矩阵: (2) 把输入的内容以纯文本方式存盘(设文件名为mymatrix.m)。 (3) 在MATLAB命令窗口中输入mymatrix,即运行该M文件,就会自动建立

7、一个名为MYMAT的矩阵,可供以后使用。,3利用冒号表达式建立一个向量 冒号表达式可以产生一个行向量,一般格式是: e1:e2:e3 其中e1为初始值,e2为步长,e3为终止值。 在MATLAB中,还可以用linspace函数产生行向量。其调用格式为: linspace(a,b,n) 其中a和b是生成向量的第一个和最后一个元素,n是元素总数。 显然,linspace(a,b,n)与a:(b-a)/(n-1):b等价。 4建立大矩阵 大矩阵可由方括号中的小矩阵或向量建立起来。,矩阵的拆分 1矩阵元素 通过下标引用矩阵的元素,例如 A(3,2)=200 采用矩阵元素的序号来引用矩阵元素。矩阵元素的

8、序号就是相应元素在内存中的排列顺序。在MATLAB中,矩阵元素按列存储,先第一列,再第二列,依次类推。例如 A=1,2,3;4,5,6; A(3) ans = 2 显然,序号(Index)与下标(Subscript )是一一对应的,以mn矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。其相互转换关系也可利用sub2ind和ind2sub函数求得。,2矩阵拆分 (1) 利用冒号表达式获得子矩阵 A(:,j)表示取A矩阵的第j列全部元素;A(i,:)表示A矩阵第i行的全部元素;A(i,j)表示取A矩阵第i行、第j列的元素。 A(i:i+m,:)表示取A矩阵第ii+m行的全部元素;A(:

9、,k:k+m)表示取A矩阵第kk+m列的全部元素,A(i:i+m,k:k+m)表示取A矩阵第ii+m行内,并在第kk+m列中的所有元素。 此外,还可利用一般向量和end运算符来表示矩阵下标,从而获得子矩阵。end表示某一维的末尾元素下标。,(2) 利用空矩阵删除矩阵的元素 在MATLAB中,定义为空矩阵。给变量X赋空矩阵的语句为X=。注意,X=与clear X不同,clear是将X从工作空间中删除,而空矩阵则存在于工作空间中,只是维数为0。,特殊矩阵 1通用的特殊矩阵 常用的产生通用特殊矩阵的函数有: zeros:产生全0矩阵(零矩阵)。 ones:产生全1矩阵(幺矩阵)。 eye:产生单位矩

10、阵。 rand:产生01间均匀分布的随机矩阵。 randn:产生均值为0,方差为1的标准正态分布随机矩阵。,例2-3 分别建立33、32和与矩阵A同样大小的零矩阵。 (1) 建立一个33零矩阵。 zeros(3) (2) 建立一个32零矩阵。 zeros(3,2) (3) 设A为23矩阵,则可以用zeros(size(A)建立一个与矩阵A同样大小零矩阵。 A=1 2 3;4 5 6; %产生一个23阶矩阵A zeros(size(A) %产生一个与矩阵A同样大小的零矩阵,例2-4 建立随机矩阵: (1) 在区间20,50内均匀分布的5阶随机矩阵。 (2) 均值为0.6、方差为0.1的5阶正态分

11、布随机矩阵。 命令如下: x=20+(50-20)*rand(5) y=0.6+sqrt(0.1)*randn(5) 此外,常用的函数还有reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成mn的二维矩阵。,2用于专门学科的特殊矩阵 (1) 魔方矩阵 魔方矩阵有一个有趣的性质,其每行、每列及两条对角线上的元素和都相等。对于n阶魔方阵,其元素由1,2,3,n2共n2个整数组成。MATLAB提供了求魔方矩阵的函数magic(n),其功能是生成一个n阶魔方阵。,例2-5 将101125等25个数填入一个5行5列的表格中,使其每行每列及对角线的和均为565。 M=100+ma

12、gic(5),(2) 范得蒙矩阵 范得蒙(Vandermonde)矩阵最后一列全为1,倒数第二列为一个指定的向量,其他各列是其后列与倒数第二列的点乘积。可以用一个指定向量生成一个范得蒙矩阵。在MATLAB中,函数vander(V)生成以向量V为基础向量的范得蒙矩阵。例如,A=vander(1;2;3;5)即可得到上述范得蒙矩阵。,(3) 希尔伯特矩阵 在MATLAB中,生成希尔伯特矩阵的函数是hilb(n)。 使用一般方法求逆会因为原始数据的微小扰动而产生不可靠的计算结果。MATLAB中,有一个专门求希尔伯特矩阵的逆的函数invhilb(n),其功能是求n阶的希尔伯特矩阵的逆矩阵。,例2-6

13、求4阶希尔伯特矩阵及其逆矩阵。 命令如下: format rat %以有理形式输出 H=hilb(4) H=invhilb(4),(4) 托普利兹矩阵 托普利兹(Toeplitz)矩阵除第一行第一列外,其他每个元素都与左上角的元素相同。生成托普利兹矩阵的函数是toeplitz(x,y),它生成一个以x为第一列,y为第一行的托普利兹矩阵。这里x, y均为向量,两者不必等长。toeplitz(x)用向量x生成一个对称的托普利兹矩阵。例如 T=toeplitz(1:6),(5) 伴随矩阵 MATLAB生成伴随矩阵的函数是compan(p),其中p是一个多项式的系数向量,高次幂系数排在前,低次幂排在后

14、。例如,为了求多项式的x3-7x+6的伴随矩阵,可使用命令: p=1,0,-7,6; compan(p),(6) 帕斯卡矩阵 我们知道,二次项(x+y)n展开后的系数随n的增大组成一个三角形表,称为杨辉三角形。由杨辉三角形表组成的矩阵称为帕斯卡(Pascal)矩阵。函数pascal(n)生成一个n阶帕斯卡矩阵。,例2-7 求(x+y)5的展开式。 在MATLAB命令窗口,输入命令: pascal(6) 矩阵次对角线上的元素1,5,10,10,5,1即为展开式的系数。,2.3 MATLAB运算,算术运算 1基本算术运算 MATLAB的基本算术运算有:(加)、(减)、*(乘)、/(右除)、(左除)

15、、(乘方)。 注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。,(1) 矩阵加减运算 假定有两个矩阵A和B,则可以由A+B和A-B实现矩阵的加减运算。运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算,A和B矩阵的相应元素相加减。如果A与B的维数不相同,则MATLAB将给出错误信息,提示用户两个矩阵的维数不匹配。,(2) 矩阵乘法 假定有两个矩阵A和B,若A为mn矩阵,B为np矩阵,则C=A*B为mp矩阵。,(3) 矩阵除法 在MATLAB中,有两种矩阵除法运算:和/,分别表示左除和右除。如果A矩阵是非奇异方阵,则AB和B/A运算可以实现。AB等效于A的逆左乘B矩阵,

16、也就是inv(A)*B,而B/A等效于A矩阵的逆右乘B矩阵,也就是B*inv(A)。 对于含有标量的运算,两种除法运算的结果相同,如3/4和43有相同的值,都等于0.75。又如,设a=10.5,25,则a/5=5a=2.1000 5.0000。对于矩阵来说,左除和右除表示两种不同的除数矩阵和被除数矩阵的关系。对于矩阵运算,一般ABB/A。,(4) 矩阵的乘方 一个矩阵的乘方运算可以表示成Ax,要求A为方阵,x为标量。 2点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.和.。两矩阵进行点运算是指它们的对应元素进行相关运算,

17、要求两矩阵的维参数相同。,关系运算 MATLAB提供了6种关系运算符:(大于)、=(大于或等于)、=(等于)、=(不等于)。它们的含义不难理解,但要注意其书写方法与数学中的不等式符号不尽相同。,关系运算符的运算法则为: (1) 当两个比较量是标量时,直接比较两数的大小。若关系成立,关系表达式结果为1,否则为0。 (2) 当参与比较的量是两个维数相同的矩阵时,比较是对两矩阵相同位置的元素按标量关系运算规则逐个进行,并给出元素比较结果。最终的关系运算的结果是一个维数与原矩阵相同的矩阵,它的元素由0或1组成。,(3) 当参与比较的一个是标量,而另一个是矩阵时,则把标量与矩阵的每一个元素按标量关系运算

18、规则逐个比较,并给出元素比较结果。最终的关系运算的结果是一个维数与原矩阵相同的矩阵,它的元素由0或1组成。,例2-8 产生5阶随机方阵A,其元素为10,90区间的随机整数,然后判断A的元素是否能被3整除。 (1) 生成5阶随机方阵A。 A=fix(90-10+1)*rand(5)+10) (2) 判断A的元素是否可以被3整除。 P=rem(A,3)=0 其中,rem(A,3)是矩阵A的每个元素除以3的余数矩阵。此时,0被扩展为与A同维数的零矩阵,P是进行等于(=)比较的结果矩阵。,逻辑运算 MATLAB提供了3种逻辑运算符:&(与)、|(或)和(非)。 逻辑运算的运算法则为: (1) 在逻辑运

19、算中,确认非零元素为真,用1表示,零元素为假,用0表示。 (2) 设参与逻辑运算的是两个标量a和b,那么, a&b a,b全为非零时,运算结果为1,否则为0。 a|b a,b中只要有一个非零,运算结果为1。 a 当a是零时,运算结果为1;当a非零时,运算结果为0。,(3) 若参与逻辑运算的是两个同维矩阵,那么运算将对矩阵相同位置上的元素按标量规则逐个进行。最终运算结果是一个与原矩阵同维的矩阵,其元素由1或0组成。 (4) 若参与逻辑运算的一个是标量,一个是矩阵,那么运算将在标量与矩阵中的每个元素之间按标量规则逐个进行。最终运算结果是一个与矩阵同维的矩阵,其元素由1或0组成。,(5) 逻辑非是单

20、目运算符,也服从矩阵运算规则。 (6) 在算术、关系、逻辑运算中,算术运算优先级最高,逻辑运算优先级最低。,例2-9 建立矩阵A,然后找出大于4的元素的位置。 (1) 建立矩阵A。 A=4,-65,-54,0,6;56,0,67,-45,0 (2) 找出大于4的元素的位置。 find(A4),4 矩阵分析,对角阵与三角阵 1对角阵 只有对角线上有非0元素的矩阵称为对角矩阵,对角线上的元素相等的对角矩阵称为数量矩阵,对角线上的元素都为1的对角矩阵称为单位矩阵。,(1) 提取矩阵的对角线元素 设A为mn矩阵,diag(A)函数用于提取矩阵A主对角线元素,产生一个具有min(m,n)个元素的列向量。

21、 diag(A)函数还有一种形式diag(A,k),其功能是提取第k条对角线的元素。 (2) 构造对角矩阵 设V为具有m个元素的向量,diag(V)将产生一个mm对角矩阵,其主对角线元素即为向量V的元素。 diag(V)函数也有另一种形式diag(V,k),其功能是产生一个nn(n=m+)对角阵,其第k条对角线的元素即为向量V的元素。,例2-10 先建立55矩阵A,然后将A的第一行元素乘以1,第二行乘以2,第五行乘以5。 A=17,0,1,0,15;23,5,7,14,16;4,0,13,0,22;10,12,19,21,3;. 11,18,25,2,19; D=diag(1:5); D*A

22、%用D左乘A,对A的每行乘以一个指定常数,2三角阵 三角阵又进一步分为上三角阵和下三角阵,所谓上三角阵,即矩阵的对角线以下的元素全为0的一种矩阵,而下三角阵则是对角线以上的元素全为0的一种矩阵。,(1) 上三角矩阵 求矩阵A的上三角阵的MATLAB函数是triu(A)。 triu(A)函数也有另一种形式triu(A,k),其功能是求矩阵A的第k条对角线以上的元素。例如,提取矩阵A的第2条对角线以上的元素,形成新的矩阵B。 (2) 下三角矩阵 在MATLAB中,提取矩阵A的下三角矩阵的函数是tril(A)和tril(A,k),其用法与提取上三角矩阵的函数triu(A)和triu(A,k)完全相同

23、。,矩阵的转置与旋转 1矩阵的转置 转置运算符是单撇号()。 2矩阵的旋转 利用函数rot90(A,k)将矩阵A旋转90的k倍,当k为1时可省略。,3矩阵的左右翻转 对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。MATLAB对矩阵A实施左右翻转的函数是fliplr(A)。 4矩阵的上下翻转 MATLAB对矩阵A实施上下翻转的函数是flipud(A)。,矩阵的逆 对于一个方阵A,如果存在一个与其同阶的方阵B,使得: AB=BA=I (I为单位矩阵) 则称B为A的逆矩阵,当然,A也是B的逆矩阵。 求一个矩阵的逆是一件非常烦琐的工作,容易出错,但在MATLAB

24、中,求一个矩阵的逆非常容易。求方阵A的逆矩阵可调用函数inv(A)。 例2-11 用求逆矩阵的方法解线性方程组。 Ax=b 其解为: x=A-1b,方阵的行列式 把一个方阵看作一个行列式,并对其按行列式的规则求值,这个值就称为矩阵所对应的行列式的值。在MATLAB中,求方阵A所对应的行列式的值的函数是det(A)。,矩阵的秩矩阵线性无关的行数与列数称为矩阵的秩。在MATLAB中,求矩阵秩的函数是rank(A)。,矩阵的特征值与特征向量 在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有3种: (1) E=eig(A):求矩阵A的全部特征值,构成向量E。 (2)

25、 V,D=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成V的列向量。,(3) V,D=eig(A,nobalance):与第2种格式类似,但第2种格式中先对A作相似变换后求矩阵A的特征值和特征向量,而格式3直接求矩阵A的特征值和特征向量。,2.3 数据分析和统计,1 最大值和最小值,x =126.8 148.5 173.0 148.4 194.7 208.9; max(x) ans =208.9,A =126.8 148.5 173.0 148.4 194.7 208.9;328.8 300.7 268.3 210.5 278.4 321.5; max(A) ans =

26、328.8 300.7 268.3 210.5 278.4 321.5 y,ind=max(A) y =328.8 300.7 268.3 210.5 278.4 321.5 ind =2 2 2 2 2 2, C=max(A, ,1) C =328.8 300.7 268.3 210.5 278.4 321.5 C=max(A, ,2) C =208.9328.8,A =126.8 148.5 173.0 148.4 194.7 208.9;328.8 300.7 268.3 210.5 278.4 321.5;B =98.0 125.9 146.7 134.2 162.4 192.4;32

27、6.9 285.3 246.9 218.6 264.1 289.9; max(A,B) ans =126.8 148.5 173.0 148.4 194.7 208.9328.8 300.7 268.3 218.6 278.4 321.5,2 求和、乘积和差分,x =1 2 3 4 5 6 7 8 9 10; sum(x) ans =55 cumsum(x) ans =1 3 6 10 15 21 28 36 45 55,A =1 3 5 7 92 4 6 8 10; sum(A) ans =3 7 11 15 19 sum(A,1) ans =3 7 11 15 19 sum(A,2) an

28、s =2530, cumsum(A) ans =1 3 5 7 93 7 11 15 19 cumsum(A,1) ans =1 3 5 7 93 7 11 15 19 cumsum(A,2) ans =1 4 9 16 252 6 12 20 30,3 统计命令,x =1 2 3 4 5 6 7 8 9 10; mean(x) ans =5.5000 median(x) ans =5.5000x=1 3 4 6 9 11; mean(x) ans =5.6667 median(x) ans =5, std(x)或std(x,0) ans =3.0277 std(x,1) ans=2.8723

29、,A =1 3 5 7 92 4 6 8 10; mean(A,1)或mean(A) ans =1.5000 3.5000 5.5000 7.5000 9.5000 mean(A,2) ans =56, std(A) ans = 0.7071 0.7071 0.7071 0.7071 0.7071 std(A,0,1) ans = 0.7071 0.7071 0.7071 0.7071 0.7071 std(A,0,2) ans =3.16233.1623 std(A,1,1) ans = 0.5000 0.5000 0.5000 0.5000 0.5000 std(A,1,2) ans =2

30、.82842.8284,4 排序,x =-72.2 -59.4 -60.2 20.7 -45.5; sort(x) ans =-72.2 -60.2 -59.4 -45.5 20.7 y,ind=sort(x) y =-72.2 -60.2 -59.4 -45.5 20.7 ind =1 3 2 5 4, A=0 4 4;2 0 2;4 2 0; sort(A)或sort(A,1) ans =0 0 02 2 24 4 4 sort(A,2) ans =0 4 40 2 20 2 4, B,ind=sort(A) B =0 0 02 2 24 4 4 ind =1 2 32 3 23 1 1,

31、 fliplr(sort(x) ans =20.7 -45.5 -59.4 -60.2 -72.2 flipud(sort(A) ans =4 4 42 2 20 0 0,5 统计频数直方图和棒图,x=1 1 2 3 3 3 5 6 7 8 8 8 8; hist(x),x=1 1 2 3 3 3 5 6 7 8 8 8 8; bar(x),x=1 1 2 3 3 3 5 6 7 8 8 8 8; stairs(x),x=1 1 2 3 3 3 5 6 7 8 8 8 8; stem(x), A=1 1 2 3; 1 3 5 8; 2 2 3 3; hist(A), A=1 1 2 3;1 3

32、 5 8;2 2 3 3; bar(A),2.4 多项式计算,1 求根, p=1 -12 0 25 116 p =1 -12 0 25 116, r=roots(p) r =11.7473 2.7028 -1.2251 + 1.4672i-1.2251 - 1.4672i, p=1 -2 1 p =1 -2 1, r=roots(p) r =11,pp=poly(r) pp =1 -2 1,2 多项式加、减、乘除运算, a=1 2 3 4; b=1 4 9 16;, c=conv(a,b) c =1 6 20 50 75 84 64, d=a+b d =2 6 12 20, q,r=decon

33、v(c,b) q =1 2 3 4 r =0 0 0 0 0 0 0, e=c+0 0 0 d e =1 6 20 52 81 96 84, q,r=deconv(e,b) q =1 2 3 6 r =0 0 0 0 -2 -6 -12,3 多项式导数和积分, g=c-0 0 0 d g =1 6 20 48 69 72 44 h=polyder(g) h =6 30 80 144 138 72 polyint(h) ans =1 6 20 48 69 72 0,2.5 数值积分,数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)法、牛顿柯特斯(Newton

34、-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间a,b分成n个子区间xi,xi+1,i=1,2,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。,数值积分的实现方法 1变步长辛普生法 基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:I,n=quad(fname,a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被

35、积函数的调用次数。,求下列定积分,2牛顿柯特斯法 基于牛顿柯特斯法,MATLAB给出了quad8函数来求定积分。该函数的调用格式为: I,n=quad8(fname,a,b,tol,trace) 其中参数的含义和quad函数相似,只是tol的缺省值取10-6。该函数可以更精确地求出定积分的值,且一般情况下函数调用的步数明显小于quad函数,从而保证能以更高的效率求出所需的定积分值。,二重定积分的数值求解使用MATLAB提供的dblquad函数就可以直接求出上述二重定积分的数值解。该函数的调用格式为: I=dblquad(f,a,b,c,d,tol,trace) 该函数求f(x,y)在a,bc,

36、d区域上的二重定积分。参数tol,trace的用法与函数quad完全相同。,例 计算二重定积分,2.6 数值微分,数值微分的实现 在MATLAB中,没有直接提供求数值导数的函数,只有计算向前差分的函数diff,其调用格式为: DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,n-1。 DX=diff(X,n):计算X的n阶向前差分。例如,diff(X,2)=diff(diff(X)。 DX=diff(A,n,dim):计算矩阵A的n阶差分,dim=1时(缺省状态),按列计算差分;dim=2,按行计算差分。,一、 符号对象 建立符号对象 1建立符号变量和

37、符号常量 MATLAB提供了两个建立符号对象的函数:sym和syms,两个函数的用法不同。 (1) sym函数 sym函数用来建立单个符号量,一般调用格式为: 符号量名=sym(符号字符串) 该函数可以建立一个符号量,符号字符串可以是常量、变量、函数或表达式。 应用sym函数还可以定义符号常量,使用符号常量进行代数运算时和数值常量进行的运算不同。下面的命令用于比较符号常量与数值常量在代数运算时的差别。,2.7 MATLAB符号计算,(2) syms函数 函数sym一次只能定义一个符号变量,使用不方便。MATLAB提供了另一个函数syms,一次可以定义多个符号变量。syms函数的一般调用格式为:

38、 syms 符号变量名1 符号变量名2 符号变量名n 用这种格式定义符号变量时不要在变量名上加字符串分界符(),变量间用空格而不要用逗号分隔。,2建立符号表达式 含有符号对象的表达式称为符号表达式。建立符号表达式有以下3种方法: (1)利用单引号来生成符号表达式。 (2)用sym函数建立符号表达式。 (3) 使用已经定义的符号变量组成符号表达式。,二、 符号表达式运算 1符号表达式的四则运算 符号表达式的加、减、乘、除运算可分别由函数symadd、symsub、symmul和symdiv来实现,幂运算可以由sympow来实现。 2符号表达式的提取分子和分母运算 如果符号表达式是一个有理分式或可

39、以展开为有理分式,可利用numden函数来提取符号表达式中的分子或分母。其一般调用格式为: n,d=numden(s) 该函数提取符号表达式s的分子和分母,分别将它们存放在n与d中。,3符号表达式的因式分解与展开 MATLAB提供了符号表达式的因式分解与展开的函数,函数的调用格式为: factor(s):对符号表达式s分解因式。 expand(s):对符号表达式s进行展开。 collect(s):对符号表达式s合并同类项。 collect(s,v):对符号表达式s按变量v合并同类项。,4符号表达式的化简 MATLAB提供的对符号表达式化简的函数有: simplify(s):应用函数规则对s进行

40、化简。 simple(s):调用MATLAB的其他函数对表达式进行综合化简,并显示化简过程。 5符号表达式与数值表达式之间的转换 利用函数sym可以将数值表达式变换成它的符号表达式。 函数numeric或eval可以将符号表达式变换成数值表达式。,三、 符号表达式中变量的确定 MATLAB中的符号可以表示符号变量和符号常量。findsym可以帮助用户查找一个符号表达式中的的符号变量。该函数的调用格式为: findsym(s,n) 函数返回符号表达式s中的n个符号变量,若没有指定n,则返回s中的全部符号变量。,四、 符号矩阵 符号矩阵也是一种符号表达式,所以前面介绍的符号表达式运算都可以在矩阵意

41、义下进行。但应注意这些函数作用于符号矩阵时,是分别作用于矩阵的每一个元素。 由于符号矩阵是一个矩阵,所以符号矩阵还能进行有关矩阵的运算。MATLAB还有一些专用于符号矩阵的函数,这些函数作用于单个的数据无意义。例如 transpose(s):返回s矩阵的转置矩阵。 其实,曾介绍过的许多应用于数值矩阵的函数,如diag、triu、tril、inv、det、rank、eig等,也可直接应用于符号矩阵。,五、符号极限 limit函数的调用格式为: (1) limit(f,x,a):求符号函数f(x)的极限值。即计算当变量x趋近于常数a时,f(x)函数的极限值。 (2) limit(f,a):求符号函

42、数f(x)的极限值。由于没有指定符号函数f(x)的自变量,则使用该格式时,符号函数f(x)的变量为函数findsym(f)确定的默认自变量,即变量x趋近于a。,(3) limit(f):求符号函数f(x)的极限值。符号函数f(x)的变量为函数findsym(f)确定的默认变量;没有指定变量的目标值时,系统默认变量趋近于0,即a=0的情况。 (4) limit(f,x,a,right):求符号函数f的极限值。right表示变量x从右边趋近于a。 (5) limit(f,x,a,left):求符号函数f的极限值。left表示变量x从左边趋近于a。,例:求下列极限,例 求下列极限。 极限1: sym

43、s a m x; f=(x*(exp(sin(x)+1)-2*(exp(tan(x)-1)/(x+a); limit(f,x,a) ans = (1/2*a*exp(sin(a)+1/2*a-exp(tan(a)+1)/a 极限2: syms x t; limit(1+2*t/x)(3*x),x,inf) ans = exp(6*t),极限3: syms x; f=x*(sqrt(x2+1)-x); limit(f,x,inf,left) ans = 1/2 极限4: syms x; f=(sqrt(x)-sqrt(2)-sqrt(x-2)/sqrt(x*x-4); limit(f,x,2,r

44、ight) ans = -1/2,六、符号导数 diff函数用于对符号表达式求导数。该函数的一般调用格式为: diff(s):没有指定变量和导数阶数,则系统按findsym函数指示的默认变量对符号表达式s求一阶导数。 diff(s,v):以v为自变量,对符号表达式s求一阶导数。 diff(s,n):按findsym函数指示的默认变量对符号表达式s求n阶导数,n为正整数。 diff(s,v,n):以v为自变量,对符号表达式s求n阶导数。,求下列导数,七、符号积分符号积分由函数int来实现。该函数的一般调用格式为: int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量

45、对被积函数或符号表达式s求不定积分。 int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分。 int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间a,b上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间a,b上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。,求下列不定积分,八、积分变换 常见的积分变换有傅立叶变换、拉普拉斯变换和Z变换。 1傅立叶(Fourier)变换 在MATLAB中,进

46、行傅立叶变换的函数是: fourier(f,x,t):求函数f(x)的傅立叶像函数F(t)。 ifourier(F,t,x):求傅立叶像函数F(t)的原函数f(x)。,2拉普拉斯(Laplace)变换 在MATLAB中,进行拉普拉斯变换的函数是: laplace(fx,x,t):求函数f(x)的拉普拉斯像函数F(t)。 ilaplace(Fw,t,x):求拉普拉斯像函数F(t)的原函数f(x)。 例9-5 计算y=x3的拉普拉斯变换及其逆变换。,3Z变换 当函数f(x)呈现为一个离散的数列f(n)时,对数列f(n)进行z变换的MATLAB函数是: ztrans(fn,n,z):求fn的Z变换像

47、函数F(z)。 iztrans(Fz,z,n):求Fz的z变换原函数f(n)。 例9-6 求数列 fn=e-2n的Z变换及其逆变换。,九. 级 数,1. 级数符号求和 求无穷级数的和需要符号表达式求和函数symsum,其调用格式为: symsum(s,v,n,m) 其中s表示一个级数的通项,是一个符号表达式。v是求和变量,v省略时使用系统的默认变量。n和m是求和的开始项和末项。,2. 函数的泰勒级数 MATLAB提供了taylor函数将函数展开为幂级数,其调用格式为: taylor(f,v,n,a) 该函数将函数f按变量v展开为泰勒级数,展开到第n项(即变量v的n-1次幂)为止,n的缺省值为6。v的缺省值与diff函数相同。参数a指定将函数f在自变量v=a处展开,a的缺省值是0。,2019/6/30,113,syms x f=exp(-x); ff=taylor(f) 结果: ff = 1-x+1/2*x2-1/6*x3+1/24*x4-1/120*x5,2019/6/30,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报