收藏 分享(赏)

分类讨论思想方法.ppt

上传人:tkhy51908 文档编号:8495953 上传时间:2019-06-30 格式:PPT 页数:17 大小:286.50KB
下载 相关 举报
分类讨论思想方法.ppt_第1页
第1页 / 共17页
分类讨论思想方法.ppt_第2页
第2页 / 共17页
分类讨论思想方法.ppt_第3页
第3页 / 共17页
分类讨论思想方法.ppt_第4页
第4页 / 共17页
分类讨论思想方法.ppt_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、分类讨论思想方法,甘肃省临泽一中制作:祁正红,高三复习专题讲座,分类讨论思想方法,在解答某些数学问题时,有时会有多种情况,对各种情况 加以分类,并逐类求解,然后综合求解,这就是分类讨论法。 分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论 思想的数学问题具有明显的逻辑性、综合性、探索性,能训练 人的思维条理性和概括性,所以在高考试题中占有重要的位置。,一、在什么情况下要进行分类讨论,1数学中的某些概念、定理、性质、法则、公式是分类定义 或分类给出的,在运用它们时要进行分类讨论。,2研究含参数的函数、方程、不等式等问题,由参数值的 “量变”而导致结果发生“质变”,因而也要进行分类讨论。,3

2、在研究几何问题时,由于图形的变化(图形位置不确定 或形状不确定),引起问题结果有多种可能,就需要对各 种情况分别进行讨论。,4含有特殊元素或特殊位置的排列组合问题,其解题的基 本策略,就是按照特殊元素或特殊位置的特征进行恰当的 划分,转化为最基本、最简单的排列组合问题,然后结合 加法原理或乘法原理完成解答。,5树立划分意识,训练思维的严谨性,保证解题的正确 与完整。,二、分类讨论的步骤、原则和方法,1分类评论的一般步骤是:,明确讨论对象,确定对象的全体确定分类标准,正确进行分类 逐步进行讨论,获取阶段性结果归纳小结,综合得出结论。,2逻辑划分应遵循的原则:,分类的对象是确定的,标准是统一的,不

3、遗漏、不重复、 分层次,不越级讨论。,3多层次分类及“二分法”处理复杂问题的分类方法。,4分类讨论后如何归纳结论。,(1)统一式。针对变量分类讨论的,且在不同条件下问题 有不同的结论,归纳结论时应采用分列式。,(2)分列式。针对参数分类讨论的,且每一类讨论结果均是 总结论的一个子集,归纳结论时应采用统一式。,三、灵活运用逻辑划分的思想方法,1通过“补集”间接求解。,2有条件时,尽量减少分类层次,寻求整体解决方法。,、再现性题组:,1集合Ax|x|4,xR,Bx|x3|a,xR, 若AB,那么a的范围是_。A.0a1;B.a1;C.a1;D.0a1。,2若a0且a1,p ,q ,则p、q的大小关

4、系是_。A.pq;B.pq;D.当a1时,pq;当0a1时,pq。,3函数 的值域是_。,5.函数 的值域是_。A.2,+;B.(-,-22,+;C.(-,+);D.-2,2。,6正三棱柱的侧面展开图是边长分别为2和4的矩形, 则它的体积为_。A. ;B. ;C. ;D. 或 。,5过点P(2,3),且在坐标轴上的截距相等的直线方程是_。A.3x2y0; B.xy50;C.3x2y0或xy50; D.不能确定。,、示范性题组:,例1.设00且a1,比较| |与| |的大小。,【分析】对数函数的性质与底数a有关,而分两类讨论。,【解】01,0;,当a1时,| | |,由、可知,,例2.已知集合A

5、和集合B各含有12个元素,AB含有4个元素,试求同时满足下面两个条件的集合C的个数:CAB且C中含有3个元素;CA。,【分析】由已知并结合集合的概念,C中的元素分两类: 属于A元素;不属于A而属于B的元素。并由含A中 元素的个数1、2、3,而将取法分三种。,【解】 1084,【另解】(排除法):,例3.设函数f(x)ax2x2,对于满足10,求实数a的取值范围。,【分析】含参的一元二次函数在有界区间上的值域问题, 先对开口方向讨论,再对其抛物线对称轴的位置进行分 类讨论。(也属数形结合法),【解】当a0时,f(x)a(x )2,a1或 ;,当a0时, ,解得;,当a0时,f(x)2x2 , f

6、(1)0,f(4)6,不合题意,由上而得,实数a的取值范围是a 。,例4.解不等式 0 (a为常数,a ),【分析】含参不等式,参数a决定了2a1的符号和两根4a、6a的大小,故对a0、a0、 a0、a 分别加以讨论.,【解】2a10时,a ;4a 0。所以分以下四种情况讨论:,当a0时,(x4a)(x6a)0,解得:x 6a;,当a0时, 0,解得:x0;,当 0,解得:x4a;,当a 时,(x4a)(x6a)0,解得:6ax4a。,综上所述,,【注】含参问题,结合参数的意义及对结果的影响而分类讨论。(含参型),z为实数或纯虚数,例5.设a0,在复数集C中,解方程: 2|z|a。(90年全国

7、高考),【解】zR,由 2|z|a 得: R;,当zR时, 2|z|a,解得:,|z|1,z(1 );,当z为纯虚数时,设zy(y0),, 2ya 解得:,y1 (0a1),由上可得,z(1 )或(1 ),【注】本题用标准解法(设zxy再代入原式得到一个 方程组,再解方程组)过程十分繁难,而挖掘隐含,对z分 两类讨论则简化了数学问题。(简化型),【另解】设zxy,代入得,当y0时,,例6.在xoy平面上给定曲线y2x,设点A(a,0),aR,曲线上 的点到点A的距离的最小值为f(a),求f(a)的函数表达式。 (本题难度0.40),【分析】求两点间距离的最小值问题,先用公式建立目标函数,转化为

8、二次函数在约束条件x0下的最小值问题,而引起对参数a的取值讨论。,【解】设M(x,y)为曲线y2x上任意一点,则,由于 2x限定x0,所以分以下情况讨论:,当a10时,xa1取最小值,即,当a10时,x0取最小值,即,综上所述,有f(a) 。,、巩固性题组:,1.若 1,则a的取值范围是_,7.到空间不共面的4个点距离相等的平面的个数是_。A. 7; B. 6; C. 5; D. 4。,8. zC,方程 3|z|20的解的个数是_。A. 2; B. 3; C. 4; D. 5。,9.复数zaa(a0)的辐角主值是_。,10.解关于x的不等式:2log (2x1)log (xa)(a0且a1),11.设首项为1,公比为q(q0)的等比数列的前n项和为S,又设 ,求 T 。,12.若复数z、z 、z 在复平面上所对应三点A、B、C组成直角三角形,且|z|2,求z。,13.有卡片9张,将0、1、2、8这9个数字分别写在每张卡片上。现从中任取3张排成三位数,若6可以当作9用,问可组成多少个不同的三位数。,14.函数f(x)(|m|1) x 2(m1)x1的图像与x轴只有一个公共点,求参数m的值及交点坐标。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报