1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)商南县高中 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若 f(x)=x 22x4lnx,则 f(x)0 的解集为( )A(0,+) B
3、(1, 0)(2,+) C(2,+) D(1,0)2 关于函数 ,下列说法错误的是( )()lnf(A) 是 的极小值点 x( B ) 函数 有且只有 1 个零点 yfx(C)存在正实数 ,使得 恒成立k()fkx(D)对任意两个正实数 ,且 ,若 ,则12,112()fxf124x3 如果向量 满足 ,且 ,则 的夹角大小为( )A30 B45 C75 D1354 数列a n的通项公式为 an=n+p,数列b n的通项公式为 bn=2n5,设 cn= ,若在数列c n中 c8c n(nN *,n8),则实数 p 的取值范围是( )A(11,25) B(12, 16 C(12,17) D16
4、,17)5 ABC 的三内角 A,B ,C 所对边长分别是 a,b,c,设向量 ,若 ,则角 B 的大小为( )A B C D6 袋内分别有红、白、黑球 3,2,1 个,从中任取 2 个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红、黑球各一个7 已知抛物线关于 x 轴对称,它的顶点在坐标原点 O,并且经过点 M(2,y 0)若点 M 到该抛物线焦点的距离为 3,则|OM|=( )A B C4 D由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”)
5、 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,
6、发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)8 复数 Z= (i 为虚数单位)在复平面内对应点的坐标是( )A(1,3) B(1,3) C(3,1) D(2,4)9 在ABC 中,内角 A,B,C 的对边分别是 a,b,c,若 a2b2= bc,sinC=2 sinB,则 A=( )A30 B60 C120 D15010用反
7、证法证明命题:“已知 a、bN *,如果 ab 可被 5 整除,那么 a、b 中至少有一个能被 5 整除”时,假设的内容应为( )Aa、b 都能被 5 整除 Ba 、b 都不能被 5 整除Ca、 b 不都能被 5 整除 Da 不能被 5 整除11如图,正六边形 ABCDEF 中,AB=2 ,则( )( + )=( )A6 B2 C2 D612若集合 A 1,1,B0,2 ,则集合z|zx y,xA,yB中的元素的个数为( )A5B4C3D2二、填空题13如图所示是 y=f(x)的导函数的图象,有下列四个命题:f(x)在(3,1)上是增函数;x=1 是 f(x)的极小值点;f(x)在(2,4)上
8、是减函数,在(1,2)上是增函数;x=2 是 f(x)的极小值点其中真命题为 (填写所有真命题的序号)由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明
9、将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)14已知 f(x),g(x)都是定义在 R 上的函数,且满足以下条件:f(x)
10、=a xg(x)(a 0, a1);g(x)0;f(x)g(x)f(x)g(x);若 ,则 a= 15下列命题:函数 y=sinx 和 y=tanx 在第一象限都是增函数;若函数 f(x)在a,b上满足 f(a)f(b)0,函数 f(x)在(a,b)上至少有一个零点;数列a n为等差数列,设数列a n的前 n 项和为 Sn,S 100,S 110,S n 最大值为 S5;在ABC 中, AB 的充要条件是 cos2Acos2B;在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强其中正确命题的序号是 (把所有正确命题的序号都写上)16已知实数 x,y 满足 ,则目标函数 z=x3y
11、的最大值为 17已知点 A(2,0),点 B(0,3),点 C 在圆 x2+y2=1 上,当ABC 的面积最小时,点 C 的坐标为 18某校为了了解学生的课外阅读情况,随机调查了 50 名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示根据条形图可得这 50 名学生这一天平均的课外阅读时间为 小时由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处
12、是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向
13、左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)三、解答题19 设函数 , ()xfe()lngx()证明: ;2()若对所有的 ,都有 ,求实数 的取值范围0()fxa20已知函数 y=x+ 有如下性质:如果常数 t0,那么该函数在(0, 上是减函数,在 ,+)上是增函数(1)已知函数 f(x)=x+ ,x1 ,3,利用上述性质,求函数 f(x)的单调区间和值域;(2)已知函数 g(x)= 和函数 h(x)=x 2a,若对任意 x10 ,1,总存在 x20,1,使得h(x 2)=g(x 1)成立,求
14、实数 a 的值由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实
15、验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)21已知 和 均为给定的大于 1 的自然数,设集合 , , ,., ,集合。 , , , ,., .(1)当 , 时,用列举法表示集合 ;(2)设 、 , 。 , 。
16、 ,其中 、 , ,., .证明:若 ,则 .22【常熟中学 2018 届高三 10 月阶段性抽测(一)】如图,某公司的 LOGO 图案是多边形 ,其ABEFMN设计创意如下:在长 、宽 的长方形 中,将四边形 沿直线 翻折到 (点4cm1ABCDFEC是线段 上异于 的一点、点 是线段 上的一点),使得点 落在线段 上.FADEND(1)当点 与点 重合时,求 面积;NNMF(2)经观察测量,发现当 最小时,LOGO 最美观,试求此时 LOGO 图案的面积.2由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为
17、了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全
18、重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)23某公司制定了一个激励销售人员的奖励方案:当销售利润不超过 8 万元时,按销售利润的 15%进行奖励;当销售利润超过 8 万元时,若超出 A 万元,则超出部分按 log5(2A+1)进行奖励记奖金为 y(单位:万元),销售利润为 x(单位:万元)(1)写出奖金 y 关于销售利润 x 的关系式;(2)如果业务员小
19、江获得 3.2 万元的奖金,那么他的销售利润是多少万元?24已知函数 f(x)= (1)求 f(x)的定义域;(2)判断并证明 f(x)的奇偶性;(3)求证:f( )= f(x)由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡
20、烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)商
21、南县高中 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:由题,f(x)的定义域为( 0,+ ),f( x)=2x 2 ,令 2x2 0,整理得 x2x20,解得 x2 或 x1,结合函数的定义域知,f( x)0 的解集为(2,+ )故选:C2 【答案】 C【解析】 , ,且当 时, ,函数递减,当 时,221()xfx()0f2x()0fx2x,函数递增,因此 是 的极小值点,A 正确; ,0f ()gf1()gx,所以当 时, 恒成立,即 单调递减,又 ,27()4x0x()0gx()x1()20e,所以 有零点且只有一个零点,B 正确;
22、设 ,易知当22()gee lnfxxh时, ,对任意的正实数 ,显然当 时, ,即x22ln12()hxxxkk, ,所以 不成立,C 错误;作为选择题这时可得结论,选 C,下面对 D 研究,()fkf()fk画出函数草图由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究
23、平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E
24、 的像的光路图。(D 点为小明眼睛所在位置)可看出(0,2)的时候递减的更快,所以 124x3 【答案】B【解析】解:由题意 故 ,即故两向量夹角的余弦值为 =故两向量夹角的取值范围是 45故选 B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角属于基础公式应用题4 【答案】C【解析】解:当 anbn 时,c n=an,当 anb n 时,c n=bn,c n 是 an,b n 中的较小者,an=n+p,a n是递减数列,bn=2n5,b n是递增数列,c8c n(n 8), c8 是 cn 的最大者,则 n=1,2,3,7,8
25、 时,c n 递增,n=8,9,10,时,c n 递减,n=1,2,3,7 时,2 n5n+p 总成立,当 n=7 时,2 75 7+p,p11,n=9,10,11,时,2 n5 n+p 总成立,当 n=9 时,2 95 9+p,成立,p25,而 c8=a8 或 c8=b8,若 a8b8,即 23p8,p16,则 c8=a8=p8,p8b 7=275, p12,故 12p 16,若 a8b 8,即 p82 85,p 16,c8=b8=23,那么 c8c 9=a9,即 8p9,p 17,故 16p17,综上,12p17故选:C由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中
26、选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的
27、蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)5 【答案】B【解析】解:若 ,则(a+b)(sinB sinA )sinC( a+c)=0,由正弦定理可得:(a+b)(ba)c ( a+c)=0,化为 a2+c2b 2= ac,cosB= = ,B(0,),B= ,故选:B【点评】本题考查了正弦
28、定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题6 【答案】D【解析】解:从 3 个红球,2 个白球,1 个黑球中任取 2 个球的取法有:2 个红球,2 个白球,1 红 1 黑,1 红 1 白,1 黑 1 白共 5 类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括 1 红 1 白,1 黑 1 白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题7 【答案】B【解析】解:由题意,抛物线关于 x 轴对称,开口向右,设方
29、程为 y2=2px(p0)点 M(2,y 0)到该抛物线焦点的距离为 3,2+ =3p=2抛物线方程为 y2=4xM(2,y 0)由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收
30、到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)|OM|=故选 B【点评】本题考查抛物线的性质,考
31、查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程8 【答案】A【解析】解:复数 Z= = =(1+2i)(1i)=3+i 在复平面内对应点的坐标是(3,1)故选:A【点评】本题考查了复数的运算法则、几何意义,属于基础题9 【答案】A【解析】解:sinC=2 sinB,c=2 b,a2b2= bc,cosA= = =A 是三角形的内角A=30故选 A【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题10【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“ a,bN,如果 ab 可被 5 整除,那么 a,b 至少
32、有 1 个能被 5 整除”的否定是“ a,b 都不能被 5 整除”故选:B11【答案】D【解析】解:根据正六边形的边的关系及内角的大小便得:= = =2+42+2=6故选:D【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式12【答案】 C【解析】 由已知,得z|zxy,xA ,yB1,1,3,所以集合z|z x y ,xA,yB中的元素的由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选
33、填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板
34、向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)个数为 3.二、填空题13【答案】 【解析】解:由图象得:f( x)在(1,3)上递减,在(3,1),(3,+)递增,f( x)在(3,1)上是增函数,正确,x=3 是 f(x)的极小值点,不正确;f(x)在(2,4)上是减函数,在(1,2)上是增函数,不正确,故答案为:14【答案】 【解析】解:由 得 ,所以 又由 f(x)g(x)f(x) g(x),即 f(x)g(x)f(x)g(x)0,也就是,说明函
35、数 是减函数,即 ,故 故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察15【答案】 【解析】解:函数 y=sinx 和 y=tanx 在第一象限都是增函数,不正确,取 x= , ,但是, ,因此不是单调递增函数;若函数 f(x)在a,b上满足 f(a)f(b)0,函数 f(x)在(a,b)上至少有一个零点,正确;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡
36、烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“
37、向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)数列a n为等差数列,设数列a n的前 n 项和为 Sn,S 100,S 110, =5(a 6+a5)0, =11a60,a 5+a60,a 60,a 50因此 Sn 最大值为 S5,正确;在ABC 中,cos2A cos2B=2sin(A+B )sin (A B)=2sin(A+B)sin(B A)0AB,因此正确;在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确其中正确命题的序号是 【点评】本题综合考查了三角函数的
38、单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题16【答案】 5 【解析】解:由 z=x3y 得 y= ,作出不等式组对应的平面区域如图(阴影部分):平移直线 y= ,由图象可知当直线 y= 经过点 C 时,直线 y= 的截距最小,此时 z 最大,由 ,解得 ,即 C(2, 1)代入目标函数 z=x3y,得 z=23(1) =2+3=5,故答案为:5由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小
39、相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了
40、让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)17【答案】 ( , ) 【解析】解:设 C(a ,b)则 a2+b2=1,点 A(2,0),点 B(0,3),直线 AB 的解析式为:3x+2y6=0如图,过点 C 作 CFAB 于点 F,欲使ABC 的面积最小,只需线段 CF 最短则 CF= ,当且仅当 2a=3b 时,取“ =”,a= ,联立求得:a= ,b= ,故点 C 的坐标为( , )故答案是:(
41、, )【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题18【答案】 0.9 【解析】解:由题意, =0.9,故答案为:0.9三、解答题由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像
42、,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)19【答案】 【解析】()令 ,ee()2ln2Fxgx21e()xFx由 在 递减,在 递增,()0ex(0, 即 成立 5 分min()l )F()gx() 记 , 在 恒成立,()xhfxaea0h,), , ()exa0h 在 递增, 又 , 7 分0,)02 当 时, 成立, 即 在 递增,2()x,)则 ,即 成立; 9 分(hxfa 当 时, 在 递增,且 ,a),min20h 必存在 使得 则 时, ,0,t(0ht(,)