收藏 分享(赏)

南昌县高中2019-2020学年高二上学期第二次月考试卷数学测试卷.doc

上传人:爱你没说的 文档编号:8468700 上传时间:2019-06-29 格式:DOC 页数:16 大小:677KB
下载 相关 举报
南昌县高中2019-2020学年高二上学期第二次月考试卷数学测试卷.doc_第1页
第1页 / 共16页
南昌县高中2019-2020学年高二上学期第二次月考试卷数学测试卷.doc_第2页
第2页 / 共16页
南昌县高中2019-2020学年高二上学期第二次月考试卷数学测试卷.doc_第3页
第3页 / 共16页
南昌县高中2019-2020学年高二上学期第二次月考试卷数学测试卷.doc_第4页
第4页 / 共16页
南昌县高中2019-2020学年高二上学期第二次月考试卷数学测试卷.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变

2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)南昌县高中 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 函数 y=x+xlnx 的单调递增区间是( )A(0,e 2) B(e 2,+)

3、 C( ,e 2) D(e 2,+)2 下列函数中,既是偶函数又在 单调递增的函数是( )(0,)A B C D3yx21yx|1yx2xy3 若函数 在 上是单调函数,则 的取值范围是( ) 2()48fk5,kA B C D,06,64,4064,4 下列哪组中的两个函数是相等函数( )A B44=fxx, g2=,2xfgxC D1,0,3,5 已知 M=(x,y)|y=2 x,N=(x,y)|y=a,若 MN=,则实数 a 的取值范围为( )A(,1) B( ,1 C( ,0) D(,06 等比数列的前 n 项,前 2n 项,前 3n 项的和分别为 A,B,C,则( )AB 2=AC

4、BA+C=2B CB (BA)=A(C A) DB(B A)=C (CA)7 某大学数学系共有本科生 1000 人,其中一、二、三、四年级的人数比为 4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为 200 的样本,则应抽取三年级的学生人数为( )A80 B40 C60 D208 设 P 是椭圆 + =1 上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于 4,则|PF 2|等于( )A22 B21 C20 D139 定义在 R 上的奇函数 f(x)满足 f(x+3 )=f(x),当 0x1 时,f (x)=2 x,则 f (2015)=( )A2 B 2 C D由于玻璃板的

5、两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的

6、位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)10若, ,则不等式 成立的概率为( )0,1b21abA B C D68411过点(1, 3)且平行于直线 x2y+3=0 的直线方程为( )Ax2y+7=0 B2x+y 1=0 Cx 2y

7、5=0 D2x+y 5=012ABC 的内角 A、B、C 的对边分别为 a、b、c,若 a、b、c 成等比数列,且 c=2a,则 cosB=( )A B C D二、填空题13在直角梯形 分别为 的中点,,/AB,DC1,B2,EFB,ABC点 在以 为圆心, 为半径的圆弧 上变动(如图所示)若 ,其中 ,PAEPD,R则 的取值范围是_214已知点 F 是抛物线 y2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M,N,F 三点不共线,则MNF 的重心到准线距离为 15抛物线 y2=8x 上一点 P 到焦点的距离为 10,则 P 点的横坐标为 16一个算法的程序框图如图,

8、若该程序输出的结果为 ,则判断框中的条件 im 中的整数 m 的值是 17ABC 外接圆半径为 ,内角 A,B ,C 对应的边分别为 a,b,c,若 A=60,b=2,则 c 的值为 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏

9、代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位

10、置)18若 P(1,4)为抛物线 C:y 2=mx 上一点,则 P 点到该抛物线的焦点 F 的距离为|PF|= 三、解答题19在数列a n中,a 1=1,a n+1=1 ,b n= ,其中 nN *(1)求证:数列b n为等差数列;(2)设 cn=bn+1( ) ,数列c n的前 n 项和为 Tn,求 Tn;(3)证明:1+ + + 2 1(nN *)20已知椭圆 C: + =1(ab0)的左,右焦点分别为 F1,F 2,该椭圆的离心率为 ,以原点为圆心,椭圆的短半轴长为半径的圆与直线 y=x+ 相切()求椭圆 C 的方程;()如图,若斜率为 k(k0)的直线 l 与 x 轴,椭圆 C 顺次交

11、于 P,Q ,R (P 点在椭圆左顶点的左侧)且RF1F2=PF1Q,求证:直线 l 过定点,并求出斜率 k 的取值范围由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A

12、 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)21化简:(1) (2) + 22设函数 f(x)=lnx

13、ax2bx(1)当 a=2,b=1 时,求函数 f(x)的单调区间;(2)令 F(x)=f (x)+ ax2+bx+ (2x 3)其图象上任意一点 P(x 0,y 0)处切线的斜率 k 恒成立,求实数 a 的取值范围;(3)当 a=0,b= 1 时,方程 f(x)=mx 在区间1,e 2内有唯一实数解,求实数 m 的取值范围23已知函数 f(x)=(log 2x2)(log 4x )由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛

14、B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像

15、,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(1)当 x2,4时,求该函数的值域;(2)若 f(x)mlog 2x 对于 x4 ,16恒成立,求 m 的取值范围24(本小题满分 12 分)已知向量 满足: , , .,ab|1|6b()2a(1)求向量与的夹角;(2)求 .|由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像

16、大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原

17、因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)南昌县高中 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:函数的定义域为(0,+)求导函数可得 f(x)=lnx+2,令 f(x)0,可得 xe 2,函数 f(x)的单调增区间是(e 2,+)故选 B2 【答案】C【解析】试题分析:函数 为奇函数,不合题意;函数 是偶函数,但是在区间 上

18、单调递减,3yx21yx0,不合题意;函数 为非奇非偶函数。故选 C。2考点:1.函数的单调性;2.函数的奇偶性。3 【答案】A【解析】试题分析:根据 可知,函数图象为开口向上的抛物线,对称轴为 ,所以若函数248fxk 8kx在区间 上为单调函数,则应满足: 或 ,所以 或 。故选 A。fx5,85k840k6考点:二次函数的图象及性质(单调性)。4 【答案】D111【解析】考点:相等函数的概念.5 【答案】D【解析】解:如图,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小

19、关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可

20、能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)M=(x,y)|y=2 x,N=(x,y)|y=a,若 MN=,则 a0实数 a 的取值范围为(,0 故选:D【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题6 【答案】C【解析】解:若公比 q=1,则 B,C 成立;故排除 A,D;若公比 q1,则 A=Sn= ,B=S 2n= ,C=S 3n= ,B(BA)= ( )=

21、(1q n)(1q n)(1+q n)A(CA)= ( )= (1q n)(1 qn)(1+q n);故 B(BA)=A(C A);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力7 【答案】B【解析】解:要用分层抽样的方法从该系所有本科生中抽取一个容量为 200 的样本,三年级要抽取的学生是 200=40,故选:B由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃

22、”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移

23、,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果8 【答案】A【解析】解:P 是椭圆 + =1 上一点,F 1、F 2是椭圆的焦点,|PF 1|等于 4,|PF 2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用9 【答案】B【解析】解:因为 f(x+3 )=f

24、(x),函数 f(x)的周期是 3,所以 f(2015)=f(3672 1)=f(1);又因为函数 f(x)是定义 R 上的奇函数,当 0x1 时,f(x)=2 x,所以 f( 1)=f(1)=2,即 f(2015)= 2故选:B【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出 f(2015)=f(36721)=f(1)10【答案】D【解析】考点:几何概型11【答案】A由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡

25、烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的

26、同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】解:由题意可设所求的直线方程为 x2y+c=0过点(1,3 )代入可得1 6+c=0 则 c=7x2y+7=0故选 A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=012【答案】B【解析】解:ABC 中,a、b、c 成等比数列,则 b2=ac,由 c=2a,则 b= a,= ,故选 B【点评】本题考查余弦定理

27、的运用,要牢记余弦定理的两种形式,并能熟练应用二、填空题13【答案】 1,【解析】考点:向量运算【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡

28、烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在

29、图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决14【答案】 【解析】解:F 是抛物线 y2=4x 的焦点,F(1,0),准线方程 x=1,设 M(x 1,y 1),N(x 2,y 2),|MF|+|NF|=x 1+1+x2+1=6,解得 x1+x2=4,MNF 的重心的横坐标为 ,MNF 的重心到准线距离为 故答案为: 【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到

30、准线的距离15【答案】 8 【解析】解:抛物线 y2=8x=2px,p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=x+ =x+2=10,x=8,故答案为:8【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解16【答案】 6 【解析】解:第一次循环:S=0+ = ,i=1+1=2 ;第二次循环:S= + = , i=2+1=3;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的

31、像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的

32、原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)第三次循环:S= + = , i=3+1=4;第四次循环:S= + = , i=4+1=5;第五次循环:S= + = , i=5+1=6;输出 S,不满足判断框中的条件;判断框中的条件为 i6?故答案为:6【点评】本题考查程序框图,尤其考查循环结构对循环体每次循环需要进行分析并找出内在规律本题属于基础题17【答案】 【解析】解:ABC 外

33、接圆半径为 ,内角 A,B,C 对应的边分别为 a,b,c,若 A=60,b=2,由正弦定理可得: ,解得:a=3,利用余弦定理:a 2=b2+c22bccosA,可得:9=4+c 22c,即 c22c5=0,解得:c=1+ ,或 1 (舍去)故答案为: 【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题18【答案】 5 【解析】解:P(1,4)为抛物线 C:y 2=mx 上一点,即有 42=m,即 m=16,抛物线的方程为 y2=16x,焦点为(4,0),即有|PF|= =5故答案为:5【点评】本题考查抛物线的方程和性质,考查两点的距离公式

34、,及运算能力,属于基础题三、解答题19【答案】 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填

35、“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】(1)证明:b n+1bn= = =1,又 b1=1 数列b n为等差数列,首项为 1,公差为 1(2)解:由(1)可得:b

36、 n=ncn=bn+1( ) =(n+1) 数列 cn的前 n 项和为 Tn= +3 + +(n+1) = +3 +n +(n+1 ) , Tn= + + + (n+1 ) = + (n+1) ,可得 Tn= (3)证明:1+ + + 2 1(nN *)即为:1+ + + 1 = =2 (k=2 ,3,)1+ + + 1+2( 1)+( )+( )=1+2 =2 11+ + + 2 1(nN *)20【答案】 【解析】()解:椭圆的左,右焦点分别为 F1(c,0),F 2(c,0),椭圆的离心率为 ,即有 = ,即 a= c,b= =c,以原点为圆心,椭圆的短半轴长为半径的圆方程为 x2+y2

37、=b2,直线 y=x+ 与圆相切,则有 =1=b,即有 a= ,则椭圆 C 的方程为 +y2=1;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡

38、烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)()证明:设 Q(x 1,y 1), R(x 2,y 2),F 1(1,0),由R

39、F 1F2=PF 1Q,可得直线 QF1和 RF1关于 x 轴对称,即有 + =0,即 + =0,即有 x1y2+y2+x2y1+y1=0,设直线 PQ:y=kx+t,代入椭圆方程,可得(1+2k 2)x 2+4ktx+2t22=0,判别式=16k 2t24(1+2k 2)(2t 22)0,即为 t22k21x1+x2= ,x 1x2= ,y1=kx1+t,y 2=kx2+t,代入可得,(k+t)(x 1+x2)+2t+2kx 1x2=0,将代入,化简可得 t=2k,则直线 l 的方程为 y=kx+2k,即 y=k(x+2)即有直线 l 恒过定点(2,0)将 t=2k 代入,可得 2k21,解

40、得 k 0 或 0k 则直线 l 的斜率 k 的取值范围是( ,0)(0, )【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题21【答案】 【解析】解 (1)原式= = = = =1由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,

41、小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(

42、7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(2)tan()= tan,sin( )=cos,cos( )=cos( )=sin ,tan(+)=tan,原式= + = + = = =1【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数化简求值,考查计算能力22【答案】 【解析】解:(1)依题意,知 f(x)的定义域为(0,+)当 a=2,b=1 时,f(x)=lnxx 2x,f(x)= 2x1= 令 f(x)=0,解得 x= 当 0x 时,f(x)0,此时 f(x)单调递增;当 x 时,f(x)0,此时 f(x)单调递减所以函数 f(x)的单调增区间( 0, ),函数 f(x)的单调减区间( ,+)(2)F(x)=lnx+ ,x2,3,所以 k=F(x 0)= ,在 x02 ,3上恒成立,所以 a( x02+x0) max,x 02,3 当 x0=2 时, x02+x0取得最大值 0所以 a0(3)当 a=0,b=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报