1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)同江市高级中学 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知直线 与圆 交于 两点, 为直线 上任3410mxy: 2()4Cxy:
3、 AB、 P340nxy:意一点,则 的面积为( )PABA B. C. D. 22332 已知 x1,则函数 的最小值为( )A4 B3 C2 D13 若复数 z= (其中 aR,i 是虚数单位)的实部与虚部相等,则 a=( )A3 B6 C9 D124 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A4 B5 C D3235 直线 的倾斜角为( )310xyA B C D10 120 60 306 不等式 的解集为( )A 或 BC 或 D7 已知两不共线的向量 , ,若对非零实数 m,n 有 m +n 与 2 共线,则 =( )A2 B2 C D由于玻璃板的两面间
4、具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,
5、重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)8 函数 log1xaf有两个不同的零点,则实数的取值范围是( )A 1,0 B , C 0,1 D 10,9 若实数 x,y 满足不等式组 则 2x+4y 的最小值是( )A6 B6 C4 D21
6、0过抛物线 y2=4x 的焦点 F 的直线交抛物线于 A,B 两点,点 O 是原点,若|AF|=3,则AOF 的面积为( )A B C D211数列a n满足 a1=3,a nanan+1=1,A n表示a n前 n 项之积,则 A2016的值为( )A B C 1 D112若直线 上存在点 满足约束条件2yx(,)y则实数 的最大值为 30,xmA、 B、 C、 D、1322二、填空题13已知 , 是空间二向量,若 =3,| |=2,| |= ,则 与 的夹角为 14若实数 x,y 满足 x2+y22x+4y=0,则 x2y 的最大值为 15已知定义域为(0,+)的函数 f(x)满足:(1)
7、对任意 x(0,+),恒有 f(2x)=2f(x)成立;(2)当 x(1,2时,f(x) =2x给出如下结论:对任意 mZ,有 f(2 m) =0; 函数 f(x)的值域为0,+);存在 nZ,使得 f(2 n+1)=9;“函数 f(x)在区间(a,b)上单调递减”的充要条件是“ 存在 kZ,使得(a,b)(2 k,2 k+1)” ;其中所有正确结论的序号是 16 , 分别为双曲线 ( , )的左、右焦点,点 在双曲线上,满足 ,1F221xyaba0P120PF若 的内切圆半径与外接圆半径之比为 ,则该双曲线的离心率为_.12P32由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重
8、影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支
9、完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力17若非零向量 , 满足| + |=| |,则 与 所成角的大小为 18( ) 0+( 2) 3 = 三、解答题19在四棱
10、锥 EABCD 中,底面 ABCD 是边长为 1 的正方形,AC 与 BD 交于点 O,EC底面 ABCD,F为 BE 的中点()求证:DE平面 ACF;()求证:BDAE20已知二次函数 f(x)的图象过点( 0,4),对任意 x 满足 f(3 x)=f(x),且有最小值是 (1)求 f(x)的解析式;(2)求函数 h(x)=f(x)(2t 3)x 在区间0,1 上的最小值,其中 tR;(3)在区间 1,3上,y=f(x)的图象恒在函数 y=2x+m 的图象上方,试确定实数 m 的范围由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃
11、板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无
12、法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)21求下列各式的值(不使用计算器):(1) ;(2)lg2+lg5log 21+log3922计算:(1)8 +( ) 0 ;(2) lg25+lg2log29log3223双曲线 C 与椭圆 + =1 有相同的焦点,直线 y= x 为 C 的一条渐近线求双曲线 C 的方程由于玻璃板的两
13、面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位
14、置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)24某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行试销,得到如下数据:单价 x(单位:元) 8 8.2 8.4 8.6 8.8 9销量 y(单位:万
15、件) 90 84 83 80 75 68(1)现有三条 y 对 x 的回归直线方程: =10x+170; =20x+250; =15x+210 ;根据所学的统计学知识,选择一条合理的回归直线,并说明理由(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件 5 元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入成本)由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填
16、“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向
17、右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)同江市高级中学 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心 到直线 的距离 , ,两平行直线 之间的距离为 ,m1d2| 3ABrdmn、 3d的面积为 ,选 CPAB|322 【答案】B【解析】解:x1x1 0由基本不等式可得, 当且仅当 即 x1=1 时,x=2 时取等号“=”故选
18、B3 【答案】A【解析】解:复数 z= = = 由条件复数 z= (其中 aR,i 是虚数单位)的实部与虚部相等,得, 18a=3a+6,解得 a=3故选:A【点评】本题考查复数的代数形式的混合运算,考查计算能力4 【答案】D【解析】试题分析:因为根据几何体的三视图可得,几何体为下图 相互垂直,面 面,ADBGAEFG,根据几何体的性质得:,/,3,1ABCEABDGE 223,(3)C, ,所以最长为 22734524,10,FC由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大
19、小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因
20、可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)考点:几何体的三视图及几何体的结构特征5 【答案】C【解析】试题分析:由直线 ,可得直线的斜率为 ,即 ,故选 C.1310xy3ktan360考点:直线的斜率与倾斜角.6 【答案】A【解析】令 得 , ;其对应二次函数开口向上,所以解集为 或 ,故选 A答案:A7 【答案】C【解析】解:两不共线的向量 , ,若对非零实数 m, n 有 m
21、+n 与 2 共线,存在非 0 实数 k 使得 m +n =k( 2 )=k 2k ,或 k(m +n )= 2 , ,或 ,则 = 故选:C【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题8 【答案】B【解析】试题分析:函数 有两个零点等价于 与 的图象有两个交点,当 时同一坐fx1xyalogayx01a标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当 时同一坐标系中做出两函数图象1如图(1),由图知有两个交点,不符合题意,故选 B.由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”)
22、玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发
23、现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)1 2 3-1-2-3-1-212xyO 1 2 3 4-1-2-3-4 -1-212xyO(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程 yf
24、x零点个数的常用方法:直接法:可利用判别式的正负直接判定一元二次方程根的个数;转化法:函数 f零点个数就是方程 0fx根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;数形结合法:一是转化为两个函数 的图,ygxh象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.本题的解答就利用了方法.,yagx9 【答案】B【解析】解:作出不等式组对应的平面区域如图:设 z=2x+4y 得 y= x+ ,平移直线 y= x+ ,由图象可知当直线 y= x+ 经过点 C 时,直线 y= x+ 的截距最小,此时
25、 z 最小,由 ,解得 ,即 C(3,3),此时 z=2x+4y=23+4( 3)=6 12=6故选:B由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小
26、明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键1
27、0【答案】B【解析】解:抛物线 y2=4x 的准线 l:x=1|AF|=3,点 A 到准线 l:x= 1 的距离为 31+x A=3x A=2,y A=2 ,AOF 的面积为 = 故选:B【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定 A 的坐标是解题的关键11【答案】D【解析】解:a 1=3,a nanan+1=1, ,得 , ,a 4=3,数列 an是以 3 为周期的周期数列,且 a1a2a3=1,2016=3672,A2016 =(1) 672=1故选:D由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理
28、想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛
29、A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)12【答案】B【解析】如图,当直线 经过函数 的图象mxxy2与直线 的交点时,03yx函数 的图像仅有一个点 在可行域内,2P由 ,得 , )2,1(二、填空题13【答案】 60 【解析】解:| |= , =3,cos = = 与 的夹角为 60故答案为:60【点评】本题考查平面向量数量积表示夹角和
30、模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式14【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设 z=x2y,再利用 z 的几何意义求最值,只需求出直线z=x2y 过图形上的点 A 的坐标,即可求解【解答】解:方程 x2+y22x+4y=0 可化为(x1) 2+(y+2) 2=5,即圆心为(1,2),半径为 的圆,(如图)425 414154 32由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B
31、应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小
32、明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)设 z=x2y,将 z 看做斜率为 的直线 z=x2y 在 y 轴上的截距,经平移直线知:当直线 z=x2y 经过点 A(2,4)时, z 最大,最大值为:10故答案为:1015【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0 f(1)= f(2) =0f(2x)=2f(x),f(2 kx)=2 kf(x)f(2 m)=f(22 m1)=2f(2 m1)=2 m1f(2)=0 ,故
33、正确;设 x(2,4时,则 x(1,2,f (x)=2f( )=4 x0若 x(4,8时,则 x(2,4 ,f(x)=2f( )=8x0一般地当 x(2 m,2 m+1),则 (1,2,f(x)=2 m+1x0,从而 f(x)0,+),故正确;由知当 x(2 m,2 m+1), f(x)=2 m+1x0,f(2 n+1)=2 n+12n1=2n1,假设存在 n 使 f(2 n+1)=9,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡
34、烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛
35、的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)即 2n1=9,2 n=10,nZ,2 n=10 不成立,故错误;由知当 x(2 k,2 k+1)时,f(x)=2 k+1x 单调递减,为减函数,若(a,b)(2 k,2 k+1)” ,则“ 函数 f(x)在区间(a,b)上单调递减” ,故正确故答案为:16【答案】 31【解析】17【答案】 90 【解析】解: =与 所成角的大小为 90故答案为 90【点评】本题用向量模的平方等于向量的
36、平方来去掉绝对值18【答案】 【解析】解:( ) 0+( 2) 3=1+(2) 2由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离
37、玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)=1+ = 故答案为: 三、解答题19【答案】【解析】【分析】()连接 FO,则 OF 为BDE
38、的中位线,从而 DEOF,由此能证明 DE平面 ACF()推导出 BDAC,EC BD,从而 BD平面 ACE,由此能证明 BDAE【解答】证明:()连接 FO,底面 ABCD 是正方形,且 O 为对角线 AC 和 BD 交点,O 为 BD 的中点,又F 为 BE 中点,OF 为BDE 的中位线,即 DEOF,又 OF平面 ACF,DE 平面 ACF,DE平面 ACF()底面 ABCD 为正方形,BDAC,EC平面 ABCD,ECBD,BD平面 ACE,BDAE 20【答案】 【解析】解:(1)二次函数 f(x)图象经过点(0,4),任意 x 满足 f(3 x)=f(x)则对称轴 x= ,f(
39、x)存在最小值 ,则二次项系数 a0设 f(x)=a (x ) 2+ 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它
40、的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)将点(0,4)代入得:f(0)= ,解得:a=1f(x)= (x ) 2+ =x23x+4(2)h(x)=f(
41、x)(2t 3)x=x22tx+4=(xt) 2+4t2,x0,1当对称轴 x=t0 时,h(x)在 x=0 处取得最小值 h(0)=4 ; 当对称轴 0x=t1 时,h( x)在 x=t 处取得最小值 h( t)=4t 2; 当对称轴 x=t1 时,h(x)在 x=1 处取得最小值 h(1)=1 2t+4=2t+5综上所述:当 t0 时,最小值 4;当 0t1 时,最小值 4t2;当 t1 时,最小值 2t+5 (3)由已知:f(x)2x+m 对于 x1,3恒成立,mx 25x+4 对 x1,3恒成立,g(x)=x 25x+4 在 x1,3上的最小值为 ,m 21【答案】 【解析】解:(1)
42、=4+1 =1;(2)lg2+lg5log 21+log39=10+2=3由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_