1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)云梦县高级中学 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知函数 f(x)= log2x,在下列区间中,包含 f(x)零点的区间是(
3、 )A(0,1) B(1,2) C(2,4) D(4,+ )2 给出下列结论:平行于同一条直线的两条直线平行;平行于同一条直线的两个平面平行;平行于同一个平面的两条直线平行;平行于同一个平面的两个平面平行其中正确的个数是( )A1 个 B2 个 C3 个 D4 个3 已知随机变量 X 服从正态分布 N(2, 2),P (0X4)=0.8,则 P(X4)的值等于( )A0.1 B0.2 C0.4 D0.64 已知集合 M=x|x|2,x R,N= 1,0,2,3 ,则 MN=( )A 1,0,2 B1,0 ,1,2 C1,0,2,3 D0 ,1,2,35 常用以下方法求函数 y=f(x) g(x
4、) 的导数:先两边同取以 e 为底的对数(e2.71828,为自然对数的底数)得 lny=g(x)lnf(x),再两边同时求导,得 y=g(x)lnf(x)+g(x)lnf(x),即 y=f(x)g(x) g(x)lnf (x)+g(x)lnf(x) 运用此方法可以求函数 h(x)=x x(x0)的导函数据此可以判断下列各函数值中最小的是( )Ah( ) Bh( ) Ch( ) Dh( )6 在ABC 中,AB 边上的中线 CO=2,若动点 P 满足 =(sin 2) +(cos 2) (R ),则( + ) 的最小值是( )A1 B1 C 2 D07 已知双曲线 : ( , ),以双曲线 的
5、一个顶点为圆心,为半径的圆21xyaba0bC被双曲线 截得劣弧长为 ,则双曲线 的离心率为( )3CA B C D6554254358 若直线 l 的方向向量为 =(1,0,2),平面 的法向量为 =( 2,0,4),则( )Al Bl Cl Dl 与 相交但不垂直由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛
6、 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中
7、,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)9 已知等差数列 的前项和为 ,且 ,在区间 内任取一个实数作为数列nanS120a3,5na的公差,则 的最小值仅为 的概率为( )S6A B C D15 141310已知 i 为虚数单位,则复数 所对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限11 的内角 , , 所对的边分别为,已知 , , ,则A3a6bA( )111A B 或 C 或 D4432312实数 a=0.2 ,b=log 0.2,c= 的大小关系正确的是( )Aacb Babc Cba c Dbca二、填空题13阅读如图
8、所示的程序框图,运行相应的程序,若输入的 X 的值为 2,则输出的结果是 14设 f(x)是(x 2+ ) 6 展开式的中间项,若 f(x)mx 在区间 , 上恒成立,则实数 m 的取值范围是 15已知函数 f(x)=x m 过点(2, ),则 m= 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重
9、合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像
10、的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)16当 时,4 xlog ax,则 a 的取值范围 17长方体的一个顶点上的三条棱长分别是 3,4,5,且它的 8 个顶点都在同一个球面上,则这个球的表面积是 18定义在 R 上的偶函数 f(x)在0,+ )上是增函数,且 f(2)=0 ,则不等式 f(log 8x)0 的解集是 三、解答题19(本小题满分 12 分)一直线被两直线 截得线段的中点是12:460,:356lxylxyP点, 当 点为 时, 求此直线方程.P020(本小题满分 12 分)ABC 的三内角 A,B,C 的对边分别为 a,b,c,已知 ksin
11、Bsin Asin C(k 为正常数),a4c.(1)当 k 时,求 cos B;54(2)若ABC 面积为 ,B 60 ,求 k 的值321已知函数 f(x)=lnx axb(a,b R)()若函数 f(x)在 x=1 处取得极值 1,求 a,b 的值()讨论函数 f(x)在区间( 1,+ )上的单调性由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实
12、验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变
13、”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)()对于函数 f(x)图象上任意两点 A(x 1,y 1),B(x 2,y 2)(x 1x 2),不等式 f(x 0)k 恒成立,其中 k 为直线 AB 的斜率,x 0=x1+(1)x 2,01,求 的取值范围22已知函数 f(x)=|2x+1|+|2x3|()求不等式 f(x)6 的解集;()若关于 x 的不等式 f( x)log 2(a 23a)2 恒成立,求实数 a 的取值范围23(本小题满分 10 分)已知函数 2fxax(1)若 求不等式 的解集;46f(2)
14、若 的解集包含 ,求实数的取值范围3f0,1由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变
15、大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)24在直角坐标系 xOy 中,过点 P(2, 1)的直线 l 的倾斜角为 45以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,曲线
16、C 的极坐标方程为 sin2=4cos,直线 l 和曲线 C 的交点为 A,B(1)求曲线 C 的直角坐标方程; (2)求|PA| |PB|由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”)
17、用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)云梦县高级中学 2019-2020 学年
18、高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:f(x)= log2x,f( 2) =20,f(4)= 0,满足 f(2)f (4)0,f( x)在区间(2,4)内必有零点,故选:C2 【答案】B【解析】考点:空间直线与平面的位置关系【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键3 【答案】A【解析】解:随机变量 服从正态分布 N(2,o 2),正
19、态曲线的对称轴是 x=2P(0X4) =0.8,P( X 4)= (10.8)=0.1,故选 A4 【答案】A【解析】解:由 M 中不等式解得:2x 2,即 M=2,2,N=1,0,2 ,3 ,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,
20、小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明
21、眼睛所在位置)M N=1,0,2,故选:A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键5 【答案】B【解析】解:(h(x)=x xxlnx+x(lnx )=xx(lnx+1),令 h(x)0,解得:x ,令 h(x)0,解得:0x ,h(x)在(0, )递减,在( ,+)递增,h( )最小,故选:B【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查6 【答案】 C【解析】解: =(sin 2) +(cos 2) ( R),且 sin2+cos2=1, =(1 cos2) +(cos 2) = +cos2( ),即 =cos2( ),可得 =cos2 ,又cos 2
22、0,1 ,P 在线段 OC 上,由于 AB 边上的中线 CO=2,因此( + ) =2 ,设| |=t,t 0,2 ,可得( + ) =2t(2t )=2t 24t=2(t 1) 22,当 t=1 时,( + ) 的最小值等于 2故选 C【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题7 【答案】B由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是
23、_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将
24、玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)考点:双曲线的性质8 【答案】B【解析】解: =(1,0,2), =(2,0,4), =2 , ,因此 l故选:B9 【答案】D【解析】考点:等差数列10【答案】A【解析】解: = =1+i,其对应的点为(1,1),故选:A由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择
25、大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)
26、为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)11【答案】B【解析】试题分析:由正弦定理可得: 或 ,故选 B.362,sin,0,i 4sinBB3考点:1、正弦定理的应用;2、特殊角的三角函数.12【答案】C【解析】解:根据指数函数和对数函数的性质,知 log 0.20,00.2 1, ,即 0a1,b0,c 1,bac故选:C【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的
27、性质是解决本题的关键二、填空题13【答案】 3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数 f(x)= 的函数值当 x=2 时,f (x)=1 22=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视14【答案】 5,+) 【解析】二项式定理【专题】概率与统计;二项式定理由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_
28、(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻
29、璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【分析】由题意可得 f(x) = x3,再由条件可得 m x2 在区间 , 上恒成立,求得 x2 在区间 ,上的最大值,可得 m 的范围【解答】解:由题意可得 f( x)= x6 = x3由 f(x)mx 在区间 , 上恒成立,可得 m x2 在区间 , 上恒成立,由于 x2 在区间 , 上的最大值为 5,故 m5,即 m 的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展
30、开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题15【答案】 1 【解析】解:将(2, )代入函数 f(x)得: =2m,解得:m=1;故答案为:1【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题16【答案】 【解析】解:当 时,函数 y=4x 的图象如下图所示若不等式 4xlog ax 恒成立,则 y=logax 的图象恒在 y=4x 的图象的上方(如图中虚线所示)y=logax 的图象与 y=4x 的图象交于( ,2)点时,a=故虚线所示的 y=logax 的图象对应的底数 a 应满足 a1故答案为:( ,1)由于玻璃板的两面间具有一定的厚度,而两个面都会成像
31、,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此
32、时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)17【答案】 50 【解析】解:长方体的一个顶点上的三条棱长分别是 3,4,5,且它的 8 个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为: ,所以球的半径为: ;则这个球的表面积是: =50故答案为:5
33、018【答案】 (0, ) (64,+) 【解析】解:f(x)是定义在 R 上的偶函数,f(log 8x)0,等价为:f(|log 8x|)f (2),又 f(x)在0 ,+)上为增函数,|log 8x|2,log 8x2 或 log8x2,x64 或 0x 即不等式的解集为x|x64 或 0x 故答案为:(0, )(64,+)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键三、解答题由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”
34、) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动
35、,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)19【答案】 16yx【解析】试题分析:设所求直线与两直线 分别交于 ,根据因为 分别在直12,l12,AxyB12,AxyB线 上,列出方程组,求解 的值,即可求解直线的方程. 112,l xy考点:直线方程的求解.20【答案】【解析】解:(1) sin Bsin Asin C
36、 ,由正弦定理得 bac,5454又 a4c, b5c ,即 b4c ,54由余弦定理得 cos B .a2 c2 b22ac(4c)2 c2 (4c)224cc18(2)S ABC ,B60.3 acsin B .即 ac4.12 3又 a4c,a 4,c 1.由余弦定理得 b2a 2c 22accos B4 21 2241 13.12由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点
37、燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选
38、填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)b ,13ksin Bsin Asin C,由正弦定理得 k ,a cb 513 51313即 k 的值为 .5131321【答案】 【解析】解:()f(x)的导数为 f(x)= a,由题意可得 f( 1)=0,且 f(1)=1,即为 1a=0,且 ab=1,解得 a=1b= 2,经检验符合题意故 a=1,b= 2;()由()可得 f(x)= a,x1,0 1,若 a0,f ( x)0,f (x )在(1,+)递增;0a1,x (1,
39、),f(x)0,x ( ,+), f(x)0;a1,f (x) 0f (x)在( 1,+)递减综上可得,a0,f(x)在(1,+)递增;0a1,f(x)在(1, )递增,在( ,+)递减;a1,f(x)在(1,+)递减()f (x 0) = a= a,直线 AB 的斜率为 k= = = a,f(x 0)k ,即 x2x1ln x1+(1 )x 2,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃
40、”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的
41、位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)即为 1ln +(1 ) ,令 t= 1,t 1lnt+(1)t,即 t1tlnt+(tlnt lnt)0 恒成立,令函数 g(t)=t 1tlnt+(tlntlnt),t1,当 0 时,g(t)=lnt+(lnt+1 )= ,令 (t)= tlnt+(tlnt+t 1),t1,(t) =1lnt+(2+lnt )= ( 1)lnt+2 1,当 0 时, (t)0,(t )在(1,+)递减,则 (t) (1)=0,故当 t1 时,g(t)0,则 g(t)在(1,+)递减, g(t )g(1)=0 符合题意;当 1 时,(t)= (1)lnt+210,解得 1t ,当 t(1, ),(t)0, (t)在(1, )递增,(t )(1)=0;当 t(1, ),g(t )0,g(t)在(1, )递增,g(t )g(1)=0,则有当 t(1, ),g(t)0 不合题意即有 0 【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键22【答案】 【解析】解:()原不等式等价于 或 或,由于玻璃板的