1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)双城区一中 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知 (0,),且 sin+cos= ,则 tan=( )A B C D2 已知
3、 A,B 是以 O 为圆心的单位圆上的动点,且| |= ,则 =( )A1 B1 C D3 下列 4 个命题:命题“若 x2x=0,则 x=1”的逆否命题为“若 x1,则 x2x0”;若“p 或 q”是假命题,则“p 且q”是真命题;若 p:x(x2)0,q:log 2x1,则 p 是 q 的充要条件;若命题 p:存在 xR,使得 2xx 2,则p:任意 xR,均有 2xx2;其中正确命题的个数是( )A1 个 B2 个 C3 个 D4 个4 已知函数 f(x)= log2x,在下列区间中,包含 f(x)零点的区间是( )A(0,1) B(1,2) C(2,4) D(4,+ )5 如果对定义在
4、 上的函数 ,对任意 ,均有 成立,则称R)(fnm 0)()(mnffnff函数 为“ 函数”.给出下列函数:)(fH ; ; ;ln5x33xxf cosi2)(xxf其中函数是“ 函数”的个数为( )0,|)(xf HA1 B2 C 3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大6 已知抛物线 的焦点为 , ,点 是抛物线上的动点,则当 的值最小时,24yxF(1,0)AP|PFA的PAF面积为( )由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防
5、止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另
6、一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)A. B. C. D. 2224【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.7 如图,四面体 OABC 的三条棱 OA,OB,OC 两两垂直,OA=OB=2,OC=3,D 为四面体 OABC 外一点给
7、出下列命题不存在点 D,使四面体 ABCD 有三个面是直角三角形不存在点 D,使四面体 ABCD 是正三棱锥存在点 D,使 CD 与 AB 垂直并且相等存在无数个点 D,使点 O 在四面体 ABCD 的外接球面上其中真命题的序号是( )A B C D8 设 =(1,2), =(1,1), = +k ,若 ,则实数 k 的值等于( )A B C D9 在直三棱柱中,ACB=90,AC=BC=1,侧棱 AA1= ,M 为 A1B1的中点,则 AM 与平面 AA1C1C 所成角的正切值为( )A B C D10某中学有高中生 3500 人,初中生 1500 人,为了解学生的学习情况,用分层抽样的方法
8、从该校学生中抽取一个容量为 n 的样本,已知从高中生中抽取 70 人,则 n 为( )A100 B150 C200 D25011执行如图的程序框图,则输出 S 的值为( )由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B
9、,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)A201
10、6 B2 C D112已知抛物线 : 的焦点为 , 是抛物线 的准线上的一点,且 的纵坐标为正数,28yxFPCP是直线 与抛物线 的一个交点,若 ,则直线 的方程为( )QPF2QFA B C D0xy0y20xy20xy二、填空题13图中的三个直角三角形是一个体积为 的几何体的三视图,则 _.h14在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去 8 个三棱锥后,剩下的凸多面体的体积是 15已知奇函数 f(x)的定义域为 2,2 ,且在定义域上单调递减,则满足不等式 f(1m )+f(12m)0的实数 m 的取值范围是 16过椭圆 + =1(ab0)的左焦点 F
11、1作 x 轴的垂线交椭圆于点 P,F 2为右焦点,若F 1PF2=60,则椭圆的离心率为 17如图,在长方体 ABCDA1B1C1D1中,AB=5,BC=4 , AA1=3,沿该长方体对角面 ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 18在极坐标系中,点(2, )到直线 (cos + sin)=6 的距离为 三、解答题19已知数列a n的前 n 项和为 Sn,首项为 b,若存在非零常数 a,使得(1 a)S n=ban+1对一切 nN*都成立()求数列a n的通项公式;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(
12、选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻
13、璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)()问是否存在一组非零常数 a,b,使得S n成等比数列?若存在,求出常数 a,b 的值,若不存在,请说明理由20如图,在平面直角坐标系 xOy 中,已知曲线 C 由圆弧 C1和圆弧 C2相接而成,两相接点 M,N 均在直线x=5 上,圆弧 C1的圆心是坐标
14、原点 O,半径为 13;圆弧 C2过点 A(29,0)(1)求圆弧 C2的方程;(2)曲线 C 上是否存在点 P,满足 ?若存在,指出有几个这样的点;若不存在,请说明理由21某中学为了普及法律知识,举行了一次法律知识竞赛活动下面的茎叶图记录了男生、女生各10 名学生在该次竞赛活动中的成绩(单位:分)由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程
15、中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”)
16、。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)已知男、女生成绩的平均值相同(1)求的值;(2)从成绩高于 86 分的学生中任意抽取 3 名学生,求恰有 2 名学生是女生的概率22某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:月份 x 1 2 3 4 5销售量 y(百件) 4 4 5 6 6()该同学为了求出 y 关于 x 的回归方程 = x+ ,根据表中数据已经正确算出 =0.6,试求出 的值,并估计该店铺 6 月份的产品销售量;(单位:百件)()一零售商现存有从该淘宝批
17、发店铺 2 月份进货的 4 件和 3 月份进货的 5 件产品,顾客甲现从该零售商处随机购买了 3 件,后经了解,该淘宝批发店铺今年 2 月份的产品都有质量问题,而 3 月份的产品都没有质量问题记顾客甲所购买的 3 件产品中存在质量问题的件数为 X,求 X 的分布列和数学期望23在平面直角坐标系 xoy 中,已知圆 C1:(x+3) 2+(y1) 2=4 和圆 C2:(x4) 2+(y5) 2=4由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和
18、 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够
19、看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(1)若直线 l 过点 A(4,0),且被圆 C1 截得的弦长为 2 ,求直线 l 的方程(2)设 P 为平面上的点,满足:存在过点 P 的无穷多对互相垂直的直线 l1 和 l2,它们分别与圆 C1 和 C2 相交,且直线 l1 被圆 C1 截得的弦长与直线 l2 被圆 C2 截得的弦长相等,求所有满足条件的点 P 的坐标24如图所示,在正方体 ABCDA1B1C1D1中,E 是
20、棱 DD1的中点()求直线 BE 与平面 ABB1A1所成的角的正弦值;()在棱 C1D1上是否存在一点 F,使 B1F平面 A1BE?证明你的结论由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不
21、能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)双城区一中 2019-2020
22、学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:将 sin+cos= 两边平方得:(sin +cos) 2=1+2sincos= ,即 2sincos= 0,0 , ,sincos0,( sincos) 2=12sincos= ,即 sincos= ,联立解得:sin= ,cos= ,则 tan= 故选:D2 【答案】B【解析】解:由 A,B 是以 O 为圆心的单位圆上的动点,且| |= ,即有| |2+| |2=| |2,可得OAB 为等腰直角三角形,则 , 的夹角为 45,即有 =| | |cos45=1 =1故选:B【点评】本题考查向量的数量积的定义,运用
23、勾股定理的逆定理得到向量的夹角是解题的关键3 【答案】C【解析】解:命题“若 x2x=0,则 x=1”的逆否命题为“若 x1,则 x2x0”,正确;若“p 或 q”是假命题,则p、q 均为假命题,p、q 均为真命题,“p 且 q”是真命题,正确;由 p:x(x2)0,得 0x2,由 q:log 2x1,得 0x 2,则 p 是 q 的必要不充分条件, 错误;若命题 p:存在 xR,使得 2xx 2,则p:任意 xR,均有 2xx2,正确正确的命题有 3 个故选:C由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)
24、为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完
25、全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)4 【答案】C【解析】解:f(x)= log2x,f( 2) =20,f(4)= 0,满足 f(2)f (4)0,f( x)在区间(2,4)内必有零点,故选:C5 【答案】 B第6 【答案】B 【解析】设 ,则 .又设 ,则 , ,所以2(,)4yP221|4()yFA214yt24yt1,当且仅当 ,即 时,
26、等号成立,此时点 ,22| 1()FtAtt(,2)P的面积为 ,故选B.P|Fy7 【答案】D【解析】【分析】对于可构造四棱锥 CABD 与四面体 OABC 一样进行判定;对于,使 AB=AD=BD,此时存在点 D,使四面体 ABCD 是正三棱锥;对于 取 CD=AB,AD=BD,此时 CD 垂直面 ABD,即存在点 D,使由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A
27、的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动
28、”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)CD 与 AB 垂直并且相等,对于先找到四面体 OABC 的内接球的球心 P,使半径为 r,只需 PD=r,可判定的真假【解答】解:四面体 OABC 的三条棱 OA,OB,OC 两两垂直,OA=OB=2,OC=3,AC=BC= ,AB=当四棱锥 CABD 与四面体 OABC 一样时,即取 CD=3,AD=BD=2此时点 D,使四面体 ABCD 有三个面是直角三角形,故不正确使 AB=AD=BD,此时存在点 D,使四面体 ABCD 是正三棱锥,故不正
29、确;取 CD=AB,AD=BD,此时 CD 垂直面 ABD,即存在点 D,使 CD 与 AB 垂直并且相等,故 正确;先找到四面体 OABC 的内接球的球心 P,使半径为 r,只需 PD=r 即可存在无数个点 D,使点 O 在四面体 ABCD 的外接球面上,故 正确故选 D8 【答案】A【解析】解: =(1,2), =(1,1), = +k =(1+k ,2+k ) , =0,1+k+2+k=0,解得 k=故选:A【点评】本题考查数量积和向量的垂直关系,属基础题9 【答案】D【解析】解:双曲线 (a0,b0)的渐近线方程为 y= x联立方程组 ,解得 A( , ),B( , ),设直线 x=
30、与 x 轴交于点 DF 为双曲线的右焦点,F(C,0)ABF 为钝角三角形,且 AF=BF,AFB90,AFD45,即 DFDAc ,ba ,c 2a2a 2c 22a 2,e 22,e 又 e1离心率的取值范围是 1e故选 D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含 a,c 的齐次式,再解不等式由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_
31、。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运
32、动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)10【答案】A【解析】解:分层抽样的抽取比例为 = ,总体个数为 3500+1500=5000,样本容量 n=5000 =100故选:A11【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件 k2016,s=1,k=1满足条件 k2016,s= ,k=2满足条件 k2016,s=2k=3满足条件 k2016,s=1,k=4满足条件 k2016,s= ,k=5观察规律可知,s 的取值以 3 为周期,由 2015=3*671+2,有满足条件 k2
33、016,s=2,k=2016不满足条件 k2016,退出循环,输出 s 的值为 2故选:B【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的 s,k 的值,观察规律得到 s 的取值以3 为周期是解题的关键,属于基本知识的考查12【答案】B【解析】由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像
34、完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面
35、镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)考点:抛物线的定义及性质【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求 p 的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程(2)注意应用抛物线定义中的距离相等的转化来解决问题(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点二、填空题13【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱 底面 ,且 为直角三角形,且VABCA,所以三棱锥的体积
36、为 ,解得 .5,6ABVhC1562032h4h考点:几何体的三视图与体积.14【答案】 【解析】解:在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去 8 个三棱锥,8 个三棱锥的体积为: = 剩下的凸多面体的体积是 1 = 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完
37、全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜
38、成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)故答案为: 【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力15【答案】 , 【解析】解:函数奇函数 f(x)的定义域为 2,2 ,且在定义域上单调递减,不等式 f(1m)+f(1 2m)0 等价为 f(1m)f(1 2m)=f(2m1),即 ,即 ,得 m ,故答案为: , 【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键注意定义域的限制16【答案】 【解析】解:由题意知点 P 的坐标为(c, )或( c, ),F 1PF2=60, = ,即 2ac= b2
39、= (a 2c2) e2+2e =0,e= 或 e= (舍去)故答案为: 【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,
40、她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)17【答案
41、】 114 【解析】解:根据题目要求得出:当 53 的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题18【答案】 1 【解析】解:点 P(2, )化为 P 直线 (cos + sin)=6 化为 点 P 到直线的距离 d= =1故答案为:1【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:()数列a n的前 n 项和为 Sn,首项为 b,由于玻璃板的两面
42、间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)存在非零常数 a,使得(1a)S n=ban+1对一切 nN*都成立,由题意得当 n=1 时,(1 a) b=ba2,a 2=ab=aa1,当 n2 时,(