1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)三山区高级中学 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知 lga+lgb=0,函数 f( x)=a x与函数 g(x)= log
3、bx 的图象可能是( )A B C D2 在下列区间中,函数 f( x)= ( ) xx 的零点所在的区间为( )A(0,1) B(1,2) C(2,3 ) D(3,4)3 已知两条直线 ,其中为实数,当这两条直线的夹角在 内变动:,:0Lyay 0,12时,的取值范围是( )A B C D0,13, 3,1,1,34 若椭圆 和圆 为椭圆的半焦距),有四个不同的交点,则椭圆的离心率 e 的取值范围是( )A B C D5 下列函数中,既是偶函数又在 单调递增的函数是( )(0,)A B C D3yx21yx|1yx2xy6 若关于 的不等式 的解集为 ,则参数 的取值范围为( )7| mRm
4、A B C D),4(),4)4,(4,(【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.7 若抛物线 y2=2px 的焦点与双曲线 =1 的右焦点重合,则 p 的值为( )A2 B2 C 4 D48 如图,长方形 ABCD 中,AB=2,BC=1 ,半圆的直径为 AB在长方形 ABCD 内随机取一点,则该点取自阴影部分的概率是( )由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛
5、A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学
6、也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)A B1 C D19 459 和 357 的最大公约数( )A3 B9 C17 D5110已知集合 ,且 使 中元素 和 中的元421,23,73kBa*,aNxAyB31yxA素 对应,则 的值分别为( )xaA B C D2,3,4,5,11已知 为 的三个角 所对的边,若 ,则 ( bcAcos(13cos)bCin:sC)A23 B43 C31 D32【命题意图】本
7、题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力12已知平面向量 与 的夹角为 ,且| |=1,| +2 |=2 ,则| |=( )A1 B C3 D2二、填空题13定义在 R 上的偶函数 f(x)在0,+ )上是增函数,且 f(2)=0 ,则不等式 f(log 8x)0 的解集是 14在(2x+ ) 6的二项式中,常数项等于 (结果用数值表示)15已知含有三个实数的集合既可表示成 1,ab,又可表示成 0,2ba,则2043ba.16设函数 f(x)= 若 ff(a) ,则 a 的取值范围是 17在正方体 ABCDA1B1C1D1中,异面直线 A1B 与 AC 所成的角是 18设抛物
8、线 的焦点为 , 两点在抛物线上,且 , , 三点共线,过 的中点 作24yF, ABFABM由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛
9、A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)轴的垂线与抛物线在第一象限内交于点 ,若 ,则 点的横坐标为 .y P32FM三、解答
10、题19已知复数 z=m(m1)+ (m 2+2m3)i (m R )(1)若 z 是实数,求 m 的值;(2)若 z 是纯虚数,求 m 的值;(3)若在复平面 C 内,z 所对应的点在第四象限,求 m 的取值范围20【启东中学 2018 届高三上学期第一次月考(10 月)】设 ,函数 .1a21xfxea(1)证明 在 上仅有一个零点;0,1a(2)若曲线 在点 处的切线与 轴平行,且在点 处的切线与直线 平行,(O 是坐标原点),证明: 32me21(本小题满分 12 分)已知过抛物线 的焦点,斜率为 的直线交抛物线于2:(0)Cypx=21Axy( , )和 ( )两点,且 2B( , )
11、 12x 9AB(I)求该抛物线 的方程;C(II)如图所示,设 为坐标原点,取 上不同于 的点 ,以 为直径作圆与 相交另外一点 ,OOSCR求该圆面积的最小值时点 的坐标S由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛
12、 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)xy
13、ROS22已知函数 ( )()xfxkeR(1)求 的单调区间和极值;(2)求 在 上的最小值f1,2(3)设 ,若对 及 有 恒成立,求实数 的取值范围()()gxfx35,2k0,1x()gx23现有 5 名男生和 3 名女生(1)若 3 名女生必须相邻排在一起,则这 8 人站成一排,共有多少种不同的排法?(2)若从中选 5 人,且要求女生只有 2 名,站成一排,共有多少种不同的排法?由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。
14、蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡
15、烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)24如图,在边长为 a 的菱形 ABCD 中,ABC=60,PC面 ABCD,E,F 是 PA 和 AB 的中点(1)求证:EF平面 PBC;(2)求 E 到平面 PBC 的距离由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡
16、烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛
17、的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)三山区高级中学 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:lga+lgb=0ab=1 则 b=从而 g(x)= logbx=logax,f(x)=a x与函数 f(x)与函数 g(x)的单调性是在定义域内同增同减结合选项可知选 B,故答案为 B2 【答案】A【解析】解:函数 f(x)=( ) xx,可得 f(0)=10,f(1)=
18、 0f(2)= 0,函数的零点在(0,1)故选:A3 【答案】C【解析】1111试题分析:由直线方程 ,可得直线的倾斜角为 ,又因为这两条直线的夹角在 ,所1:Lyx0450,12以直线 的倾斜角的取值范围是 且 ,所以直线的斜率为2:0Lax036且 ,即 或 ,故选 C.0tn3t60tan451a3考点:直线的倾斜角与斜率.4 【答案】 A【解析】解:椭圆 和圆 为椭圆的半焦距)的中心都在原点,且它们有四个交点,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选
19、择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6
20、)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)圆的半径 ,由 ,得 2cb,再平方,4c 2b 2,在椭圆中,a 2=b2+c25c 2, ;由 ,得 b+2c2a ,再平方,b 2+4c2+4bc4a 2,3c 2+4bc3a 2,4bc3b 2,4c3b,16c 29b 2,16c 29a 29c2,9a 225c 2, , 综上所述, 故选 A5 【答案】C【解析】试题分析:函数 为奇函数,不合
21、题意;函数 是偶函数,但是在区间 上单调递减,3yx21yx0,不合题意;函数 为非奇非偶函数。故选 C。2考点:1.函数的单调性;2.函数的奇偶性。6 【答案】A7 【答案】D由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡
22、烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【
23、解析】解:双曲线 =1 的右焦点为(2,0),即抛物线 y2=2px 的焦点为(2,0), =2,p=4故选 D【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题8 【答案】B【解析】解:由题意,长方形的面积为 21=2,半圆面积为 ,所以阴影部分的面积为 2 ,由几何概型公式可得该点取自阴影部分的概率是 ;故选:B【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之9 【答案】D【解析】解:459 357=1102,357102=351,10251=2,459 和 357 的最大公约数是 51,故选:D【点评】本题考查辗转相除法,这是一个算法案例,还有一
24、个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法本题也可以验证得到结果10【答案】D【解析】试题分析:分析题意可知:对应法则为 ,则应有 (1)或31yx423ak(2),由于 ,所以(1)式无解,解(2)式得: 。故选 D。4231ak*aN25a考点:映射。由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移
25、动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请
26、你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)11【答案】C【解析】由已知等式,得 ,由正弦定理,得 ,则3cosbCsin3(icosincs)CBCB,所以 ,故选 Csin3i()inBAi:n3:112【答案】D【解析】解:由已知,| +2 |2=12,即 ,所以| |2+4| | | +4=12,所以| |=2;故选 D【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方二、填空题13【答案】 (0, ) (64,+) 【解析】解:f(x)是定义在 R 上的偶函数,f(log 8x)0,等价为:f(|l
27、og 8x|)f (2),又 f(x)在0 ,+)上为增函数,|log 8x|2,log 8x2 或 log8x2,x64 或 0x 即不等式的解集为x|x64 或 0x 故答案为:(0, )(64,+)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键14【答案】 240 【解析】解:由(2x+ ) 6,得= 由 63r=0,得 r=2常数项等于 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比
28、较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合
29、。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)故答案为:24015【答案】-1【解析】试题分析:由于 ,所以只能 , ,所以 。2,1,0baab0b1a20320341ab考点:集合相等。16【答案】 或 a=1 【解析】解:当 时, ,由 ,解得: ,所以 ;当 ,f(a)=2 ( 1a),02(1a)1,若 ,则 ,分析可得 a=1若 ,即 ,因为 212
30、(1a )=4a2,由 ,得: 综上得: 或 a=1故答案为: 或 a=1【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题17【答案】 60 【解析】解:连结 BC1、A 1C1,在正方体 ABCDA1B1C1D1中,A 1A 平行且等于 C1C,四边形 AA1C1C 为平行四边形,可得 A1C1AC,因此BA 1C1(或其补角)是异面直线 A1B 与 AC 所成的角,设正方体的棱长为 a,则A 1B1C 中 A1B=BC1=C1A1= a,A 1B1C 是等边三角形,可得BA 1C1=60,由于玻璃板的两面间具有一定的厚度,而两个面都会成
31、像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)
32、此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)即异面直线 A1B 与 AC 所成的角等于 60故答案为:60【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题18【答案】2【解析】由题意,得 , ,
33、准线为 ,设 、 ,直线 的方程为2p(1,0)F1x1(,)Axy2(,)BAB,代入抛物线方程消去 ,得 ,所以 ,(1)ykxy222(40kk214kx又设 ,则 ,所以 ,所以120(,)Py01212()()x02(,)k因为 ,解得 ,所以 点的横坐标为 20213|Fxk2kM三、解答题19【答案】 【解析】解:(1)z 为实数m 2+2m3=0,解得:m= 3 或 m=1;(2)z 为纯虚数 ,解得:m=0 ;(3)z 所对应的点在第四象限 ,解得:3m020【答案】(1) 在 上有且只有一个零点(2)证明见解析fx( ) ( , )【解析】试题分析:由于玻璃板的两面间具有一
34、定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进
35、行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)试题解析:(1) , ,221xxfee0fx在 上为增函数a,, ,a0f又 ,11aafee,即 ,,0f由零点存在性定理可知, 在 上为增函数,且 ,x,010fa在 上仅有一个零点。fx0,1a(
36、2) ,设点 ,则 ,2xe0,Py02xfe在点 处的切线与 轴平行, , ,yf x0101x, ,1,PaeOPke点 处切线与直线 平行,M点 处切线的斜率 ,21mfae 又题目需证明 ,即 ,321mae3则只需证明 ,即 。2m令 ,则 ,ge1ge易知,当 时, ,单调递减,,00当 时, ,单调递增,,mm,即 ,ing10mge,1e由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“
37、不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡
38、烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置),得证。321mae21【答案】【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力因为 12y, 0,化简得 126yy ,所以 2 2125656334yy,当且仅当 256y即 16, 时等号成立. 4=圆的直径 ,因为 21y64,所以当 21y64 即 1=8 时,OS=211xy+21(8)64+-min85,所以所求圆的面积
39、的最小时,点 的坐标为 S8( , )22【答案】(1) 的单调递增区间为 ,单调递减区间为 ,()f (,)k(,)k,无极大值;(2) 时 , 时1()kfxe极 小 值 2()fxfe最 小 值 23k, 时, ;(3) .f最 小 值 32fxe最 小 值 【解析】由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它
40、与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯
41、视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(2)当 ,即 时, 在 上递增, ;1k2k()fx1,2()(1)fxfke最 小 值当 ,即 时, 在 上递减, ;3 2最 小 值当 ,即 时, 在 上递减,在 上递增,()f,k,k 1()()kfxfe最 小 值(3) , ,2xg23)xge由 ,得 ,()03当 时, ;2xk()0x当 时, ,3g 在 上递减,在 递增,()gx,)k3(,)2k故 ,(2e最 小 值又 , ,当 时, ,35,k30,1k0,1x 32()()kgxke最 小 值 对 恒成立等价于 ;()gx,3
42、2()kge最 小 值又 对 恒成立32ke最 小 值 5,2 ,故 132min()k考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用.【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的