收藏 分享(赏)

高二数学(人教B版)选修1-1全册课件1、2-1-2椭圆的几何性质.ppt

上传人:tkhy51908 文档编号:8313486 上传时间:2019-06-19 格式:PPT 页数:48 大小:755.50KB
下载 相关 举报
高二数学(人教B版)选修1-1全册课件1、2-1-2椭圆的几何性质.ppt_第1页
第1页 / 共48页
高二数学(人教B版)选修1-1全册课件1、2-1-2椭圆的几何性质.ppt_第2页
第2页 / 共48页
高二数学(人教B版)选修1-1全册课件1、2-1-2椭圆的几何性质.ppt_第3页
第3页 / 共48页
高二数学(人教B版)选修1-1全册课件1、2-1-2椭圆的几何性质.ppt_第4页
第4页 / 共48页
高二数学(人教B版)选修1-1全册课件1、2-1-2椭圆的几何性质.ppt_第5页
第5页 / 共48页
点击查看更多>>
资源描述

1、1知识与技能 掌握椭圆的几何图形及简单几何性质,能根据这些几何性质解决一些简单问题,从而培养学生分析、归纳、推理的能力 2过程与方法 通过数形结合、观察分析、归纳出椭圆的几何性质,进一步体会数形结合的思想,掌握利用方程研究曲线性质的基本方法 3情感、态度与价值观 通过本节的学习,使学生进一步体会曲线与方程的对立关系,感受坐标法在研究几何图形中的作用,本节重点:利用椭圆的标准方程研究椭圆的几何性质 本节难点:椭圆的几何性质的实际应用,1根据曲线的方程,研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一本节就是根据椭圆的标准方程来研究它的几何性质其性质可分为两类:一类是与坐标系无关

2、的本身固有性质,如长短轴长、焦距、离心率;一类是与坐标系有关的性质,如顶点、焦点 2根据椭圆几何性质解决实际问题时,关键是将实际问题转化为数学问题,建立数学模型,用代数知识解决几何问题,体现了数形结合思想、函数与方程及等价转化的数学思想方法,1椭圆的简单几何性质,axa且byb,bxb且aya,B1(0,b)、B2(0,b),B1(b,0)、B2(b,0),2b,2a,F1(C,0),F2(C,0),F1(0,C),F2(0,C),x轴、y轴,(0,0),2c,(0e1),2.当椭圆的离心率越 ,则椭圆越扁; 当椭圆的离心率越 ,则椭圆越趋近于圆,趋近于1,趋近于0,例1 求椭圆25x216y

3、2400的长轴和短轴的长、离心率、焦点坐标和顶点坐标,说明 已知椭圆的方程求其几何量时,应先将方程化成标准形式,找准a与b,才能正确地写出焦点坐标、顶点坐标等,求椭圆4x29y21的长轴长、焦距、焦点坐标、顶点坐标和离心率,例2 求适合下列条件的椭圆的标准方程(2)在x轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为8.,如图所示,A1FA2为等腰直角三角形,OF为斜边A1A2的中线(高),且|OF|c,|A1A2|2b, cb4,a2b2c232,,例3 已知椭圆的方程为2x23y2m(m0),则此椭圆的离心率为 ( )答案 B,已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于

4、9,则椭圆E的离心率等于 ( )答案 B,(2010广东文,7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 ( )答案 B,例5 已知F1、F2是椭圆的两个焦点,P为椭圆上一点,F1PF260.求椭圆的离心率的取值范围,说明 已知直线的斜率,常设直线的斜截式方程,已知弦的长度,考虑弦长公式列方程,求参数,辨析 当2m0时,焦点坐标在x轴上;当m2时,焦点坐标在y轴上,一、选择题 1椭圆的一个顶点与两焦点组成等边三角形,则它的离心率e为 ( )答案 A,2椭圆的对称轴是坐标轴,长轴长为6,焦距为4,则椭圆的方程为 ( ),答案 C 解析 长轴长为6, 2a6,a3,焦距2c4,c2,,A有相等的长、短轴 B有相等的焦距 C有相同的焦点 Dx、y有相同的取值范围 答案 B,解析 0k9,09k9,1615k25, 25k9k16, 故两椭圆有相等的焦距,4椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为 ( )答案 C,二、填空题 5椭圆25x2y225的长轴长为_,短轴长为_,焦点坐标为_,离心率为_,三、解答题|PF1|PF2|2a20. 又|PF2|3|PF1|,,|PF1|5,|PF2|15. 由两点间的距离公式可得,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报