收藏 分享(赏)

第六章 时间序列计量经济学模型的理论与方法.ppt

上传人:fmgc7290 文档编号:8310992 上传时间:2019-06-19 格式:PPT 页数:171 大小:1.17MB
下载 相关 举报
第六章 时间序列计量经济学模型的理论与方法.ppt_第1页
第1页 / 共171页
第六章 时间序列计量经济学模型的理论与方法.ppt_第2页
第2页 / 共171页
第六章 时间序列计量经济学模型的理论与方法.ppt_第3页
第3页 / 共171页
第六章 时间序列计量经济学模型的理论与方法.ppt_第4页
第4页 / 共171页
第六章 时间序列计量经济学模型的理论与方法.ppt_第5页
第5页 / 共171页
点击查看更多>>
资源描述

1、第六章 时间序列计量经济学模型的理论与方法,6.0 滞后变量 6.1 时间序列的平稳性及其检验 6.2 随机时间序列模型的识别和估计 6.3 协整分析与误差修正模型,6.0 滞后变量模型,一、滞后变量模型 二、分布滞后模型的参数估计 三、自回归模型的参数估计 四、格兰杰因果关系检验,在经济运行过程中,广泛存在时间滞后效应。某些经济变量不仅受到同期各种因素的影响,而且也受到过去某些时期的各种因素甚至自身的过去值的影响。,一、滞后变量模型,通常把这种过去时期的,具有滞后作用的变量叫做滞后变量(Lagged Variable),含有滞后变量的模型称为滞后变量模型。 滞后变量模型考虑了时间因素的作用,

2、使静态分析的问题有可能成为动态分析。含有滞后解释变量的模型,又称动态模型(Dynamical Model)。,1. 滞后效应与与产生滞后效应的原因,因变量受到自身或另一解释变量的前几期值影响的现象称为滞后效应。表示前几期值的变量称为滞后变量。如:消费函数通常认为,本期的消费除了受本期的收入影响之外,还受前1期,或前2期收入的影响:Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。,产生滞后效应的原因,1. 心理因素:人们的心理定势,行为方式滞后于经济形势的变化,如中彩票的人不可能很快改变其生活方式。2. 技术原因:如当年的产出在某种程度上依赖于过去若干期内投资形成的固

3、定资产。3. 制度原因:如定期存款到期才能提取,造成了它对社会购买力的影响具有滞后性。,2. 滞后变量模型,以滞后变量作为解释变量,就得到滞后变量模型。它的一般形式为:,q,s:滞后时间间隔,自回归分布滞后模型(autoregressive distributed lag model, ADL):既含有Y对自身滞后变量的回归,还包括着X分布在不同时期的滞后变量。有限自回归分布滞后模型:滞后期长度有限无限自回归分布滞后模型:滞后期无限,(1)分布滞后模型(distributed-lag model),分布滞后模型:模型中没有滞后被解释变量,仅有解释变量X的当期值及其若干期的滞后值:,0:短期(s

4、hort-run)或即期乘数(impact multiplier),表示本期X变化一单位对Y平均值的影响程度。 i (i=1,2,s):动态乘数或延迟系数,表示各滞后期X的变动对Y平均值影响的大小。,如果各期的X值保持不变,则X与Y间的长期或均衡关系即为:,称为长期(long-run)或均衡乘数(total distributed-lag multiplier),表示X变动一个单位,由于滞后效应而形成的对Y平均值总影响的大小。,2. 自回归模型(autoregressive model),而,,称为一阶自回归模型(first-order autoregressive model)。,自回归模型

5、:模型中的解释变量仅包含X的当期值与被解释变量Y的一个或多个滞后值,二、分布滞后模型的参数估计,无限期的分布滞后模型,由于样本观测值的有限性,使得无法直接对其进行估计。有限期的分布滞后模型,OLS会遇到如下问题: 1. 没有先验准则确定滞后期长度;,1. 分布滞后模型估计的困难,2. 如果滞后期较长,将缺乏足够的自由度进行估计和检验; 3. 同名变量滞后值之间可能存在高度线性相关,即模型存在高度的多重共线性。,2. 分布滞后模型的修正估计方法,人们提出了一系列的修正估计方法,但并不很完善。,各种方法的基本思想大致相同:都是通过对各滞后变量加权,组成线性合成变量而有目的地减少滞后变量的数目,以缓

6、解多重共线性,保证自由度。(1)经验加权法根据实际问题的特点、实际经验给各滞后变量指定权数,滞后变量按权数线性组合,构成新的变量。权数据的类型有:,递减型:,即认为权数是递减的,X的近期值对Y的影响较远期值大。如消费函数中,收入的近期值对消费的影响作用显然大于远期值的影响。例如:滞后期为 3的一组权数可取值如下:1/2, 1/4, 1/6, 1/8,即认为权数是相等的,X的逐期滞后值对值Y的影响相同。如滞后期为3,指定相等权数为1/4,则新的线性组合变量为:,矩型:,则新的线性组合变量为:,权数先递增后递减呈倒“V”型。例如:在一个较长建设周期的投资中,历年投资X为产出Y的影响,往往在周期期中

7、投资对本期产出贡献最大。如滞后期为4,权数可取为1/6, 1/4, 1/2, 1/3, 1/5 则新变量为,倒V型,例6.0.1 对一个分布滞后模型:,给定递减权数:1/2, 1/4, 1/6, 1/8,令,原模型变为:,该模型可用OLS法估计。假如参数估计结果为:,=0.5,=0.8,则原模型的估计结果为:,经验权数法的优点是:简单易行;缺点是:设置权数的随意性较大,通常的做法是:多选几组权数,分别估计出几个模型,然后根据常用的统计检验(方检验,检验,t检验,-检验),从中选择最佳估计式。,(2)阿尔蒙(lmon)多项式法,主要思想:针对有限滞后期模型,通过阿尔蒙变换,定义新变量,以减少解释

8、变量个数,然后用OLS法估计参数。主要步骤为:第一步,阿尔蒙变换 对于分布滞后模型:,假定其回归系数i可用一个关于滞后期i的适当阶数的多项式来表示,即:,i=0,1,s,其中,ms-1。阿尔蒙变换要求先验地确定适当阶数k,例如取k=2,得:,(*),将(*)代入分布滞后模型:,得:,定义新变量,将原模型转换为:,第二步,模型的OLS估计,对变换后的模型进行OLS估计,得:,再计算出:,求出滞后分布模型参数的估计值:,由于m+1s,可以认为原模型存在的自由度不足和多重共线性问题已得到改善。,需注意的是,在实际估计中,阿尔蒙多项式的阶数m一般取2或3,不超过4,否则达不到减少变量个数的目的。,例6

9、.0.2 表6.0.1给出了中国电力基本建设投资X与发电量Y的相关资料,拟建立一多项式分布滞后模型来考察两者的关系。,由于无法预见知电力行业基本建设投资对发电量影响的时滞期,需取不同的滞后期试算。,(13.62)(1.86) (0.15) (-0.67),经过试算发现,在2阶阿尔蒙多项式变换下,滞后期数取到第6期,估计结果的经济意义比较合理。2阶阿尔蒙多项式估计结果如下:,求得的分布滞后模型参数估计值为:,最后得到分布滞后模型估计式为:,为了比较,下面给出直接对滞后6期的模型进行OLS估计的结果:,(3)科伊克(Koyck)方法,科伊克方法是将无限分布滞后模型转换为自回归模型,然后进行估计。对

10、于无限分布滞后模型:,科伊克变换假设i随滞后期i按几何级数衰减:,其中,01,称为分布滞后衰减率,1-称为调整速率(Speed of adjustment)。,科伊克变换的具体做法:,将科伊克假定i=0i代入无限分布滞后模型,得:,滞后一期并乘以 ,得 :,(*),(*),将(*)减去(*)得科伊克变换模型:,整理得科伊克模型的一般形式:,科伊克模型的特点:,(1)以一个滞后因变量Yt-1代替了大量的滞后解释变量Xt-i,最大限度地节省了自由度,解决了滞后期长度s难以确定的问题; (2)由于滞后一期的因变量Yt-1与Xt的线性相关程度可以肯定小于X的各期滞后值之间的相关程度,从而缓解了多重共线

11、性。,但科伊克变换也同时产生了两个新问题:(1)模型存在随机项和vt的一阶自相关性; (2)滞后被解释变量Yt-1与随机项vt不独立。 这些新问题需要进一步解决。,三、自回归模型的参数估计,一个无限期分布滞后模型可以通过科伊克变换转化为自回归模型。 事实上,许多滞后变量模型都可以转化为自回归模型,自回归模型是经济生活中更常见的模型。 以适应预期模型以及局部调整模型为例进行说明。,1. 自回归模型的构造,(1)自适应预期(Adaptive expectation)模型,在某些实际问题中,因变量Yt并不取决于解释变量的当前实际值Xt,而取决于Xt的“预期水平”或“长期均衡水平”Xte。例如,家庭本

12、期消费水平,取决于本期收入的预期值;市场上某种商品供求量,决定于本期该商品价格的均衡值。,因此,自适应预期模型最初表现形式是:,由于预期变量是不可实际观测的,往往作如下自适应预期假定:,其中:r为预期系数(coefficient of expectation), 0r 1。,该式的经济含义为:“经济行为者将根据过去的经验修改他们的预期”,即本期预期值的形成是一个逐步调整过程,本期预期值的增量是本期实际值与前一期预期值之差的一部分,其比例为r 。这个假定还可写成:,将,得:,代入,将(*)式滞后一期并乘以(1-r),得:,(*),以(*)减去(*),整理得:,其中,可见自适应预期模型转化为自回归

13、模型。,(*),(2)局部调整(Partial Adjustment)模型,局部调整模型主要是用来研究物资储备问题的。 例如,企业为了保证生产和销售,必须保持一定的原材料储备。对应于一定的产量或销售量Xt,存在着预期的最佳库存Yte。 局部调整模型的最初形式为:,Yte不可观测。由于生产条件的波动,生产管理方面的原因,库存储备Yt的实际变化量只是预期变化的一部分。,或:,(*),储备按预定水平逐步进行调整,故有如下局部调整假设:,其中,为调整系数,0 1将(*)式代入,可见,局部调整模型转化为自回归模型,2. 自回归模型的参数估计,考伊克模型:,对于自回归模型:,估计时的主要问题:滞后被解释变

14、量的存在可能导致它与随机扰动项相关,以及随机扰动项出现序列相关性。,自适应预期模型:,局部调整模型:,存在:滞后被解释变量Yt-1与随机扰动项t的异期相关性。,因此,对自回归模型的估计主要需视滞后被解释变量与随机扰动项的不同关系进行估计。以一阶自回归模型为例说明:,显然存在:,(1) 工具变量法,若Yt-1与t同期相关,则OLS估计是有偏的,并且不是一致估计。因此,对上述模型,通常采用工具变量法,即寻找一个新的经济变量Zt,用来代替Yt-1。参数估计量具有一致性。,对于一阶自回归模型:,在实际估计中,一般用X的若干滞后的线性组合作为Yt-1的工具变量:,由于原模型已假设随机扰动项t与解释变量X

15、及其滞后项不存在相关性,因此上述工具变量与t不再线性相关。一个更简单的情形是直接用Xt-1作为Yt-1的工具变量。,(2)普通最小二乘法,若滞后被解释变量Yt-1与随机扰动项t同期无关(如局部调整模型),可直接使用OLS法进行估计,得到一致估计量。,上述工具变量法只解决了解释变量与t相关对参数估计所造成的影响,但没有解决t的自相关问题。,注意:,事实上,对于自回归模型, t项的自相关问题始终存在,对于此问题,至今没有完全有效的解决方法。唯一可做的,就是尽可能地建立“正确”的模型,以使序列相关性的程度减轻。,例6.0.3 建立中国长期货币流通量需求模型,经验表明:中国改革开放以来,对货币需求量(

16、Y)的影响因素,主要有资金运用中的贷款额(X)以及反映价格变化的居民消费者价格指数(P)。,长期货币流通量模型可设定为:,由于长期货币流通需求量不可观测,作局部调整:,(*),(*),将(*)式代入(*)得短期货币流通量需求模型:,对局部调整模型:,运用OLS法估计结果如下:,(-2.93)(2.86) (3.10) (2.87),最后得到长期货币流通需求模型的估计式:,注意:,尽管D.W.=1.733,但不能据此判断自回归模型不存在自相关(Why?)。但LM=0.7855,=5%下,临界值2(1)=3.84,判断:模型已不存在一阶自相关。,如果直接对下式作OLS回归,(-4.81) (58.

17、79) (5.05),得,,可见该模型随机扰动项具有序列相关性,,四、格兰杰因果关系检验,自回归分布滞后模型旨在揭示:某变量的变化受其自身及其他变量过去行为的影响。 然而,许多经济变量有着相互的影响关系,GDP,消费,问题:当两个变量在时间上有先导滞后关系时,能否从统计上考察这种关系是单向的还是双向的? 即:主要是一个变量过去的行为在影响另一个变量的当前行为呢?还是双方的过去行为在相互影响着对方的当前行为?,格兰杰因果关系检验(Granger test of causality),对两变量Y与X,格兰杰因果关系检验要求估计:,(*),(*),可能存在有四种检验结果: (1)X对Y有单向影响,表

18、现为(*)式X各滞后项前的参数整体为零,而Y各滞后项前的参数整体不为零; (2)Y对X有单向影响,表现为(*)式Y各滞后项前的参数整体为零,而X各滞后项前的参数整体不为零; (3)Y与X间存在双向影响,表现为Y与X各滞后项前的参数整体不为零;,(4)Y与X间不存在影响,表现为Y与X各滞后项前的参数整体为零。,格兰杰检验是通过受约束的F检验完成的。如:,针对,中X滞后项前的参数整体为零的假设(X不是Y的格兰杰原因)。,分别做包含与不包含X滞后项的回归,记前者与后者的残差平方和分别为RSSU、RSSR;再计算F统计量:,k为无约束回归模型的待估参数的个数。,如果: FF(m,n-k) ,则拒绝原假

19、设,认为X是Y的格兰杰原因。,注意:格兰杰因果关系检验对于滞后期长度的选择有时很敏感。不同的滞后期可能会得到完全不同的检验结果。因此,一般而言,常进行不同滞后期长度的检验,以检验模型中随机误差项不存在序列相关的滞后期长度来选取滞后期。,例6.0.4 检验19782000年间中国当年价GDP与居民消费CONS的因果关系。,取两阶滞后,Eviews给出的估计结果为:,判断:=5%,临界值F0.05(2,17)=3.59 拒绝“GDP不是CONS的格兰杰原因”的假设,不拒绝“CONS不是GDP的格兰杰原因”的假设。因此,从2阶滞后的情况看,GDP的增长是居民消费增长的原因,而不是相反。但在2阶滞后时

20、,检验的模型存在1阶自相关性。,随着滞后阶数的增加,拒绝“GDP是居民消费CONS的原因”的概率变大,而拒绝“居民消费CONS是GDP的原因”的概率变小。如果同时考虑检验模型的序列相关性以及赤池信息准则,发现:滞后4阶或5阶的检验模型不具有1阶自相关性,而且也拥有较小的AIC值,这时判断结果是:GDP与CONS有双向的格兰杰因果关系,即相互影响。,分析:,6.1 时间序列的平稳性及其检验,一、问题的引出:非平稳变量与经典回归模型 二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整、趋势平稳与差分平稳随机过程,一、问题的引出:非平稳变量与经典回归模型,常见的数据类型

21、,到目前为止,经典计量经济模型常用到的数据有: 时间序列数据(time-series data); 截面数据(cross-sectional data) 平行/面板数据(panel data/time-series cross-section data)时间序列数据是最常见,也是最常用到的数据。,经典回归模型与数据的平稳性,经典回归分析暗含着一个重要假设:数据是平稳的。 数据非平稳,大样本下的统计推断基础“一致性”要求被破怀。 经典回归分析的假设之一:解释变量X是非随机变量 放宽该假设:X是随机变量,则需进一步要求:(1)X与随机扰动项 不相关Cov(X,)=0,依概率收敛:,(2),表现在:

22、两个本来没有任何因果关系的变量,却有很高的相关性(有较高的R2):例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。在现实经济生活中:情况往往是实际的时间序列数据是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。, 数据非平稳,往往导致出现“虚假回归”问题,二、时间序列数据的平稳性,时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。,假定某个时间序列是由某一随机过程(stochastic process)生成的,即

23、假定时间序列Xt(t=1, 2, )的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(Xt)=是与时间t 无关的常数;2)方差Var(Xt)=2是与时间t 无关的常数;3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochastic process)。,例6.1.1一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=t , tN(0,2),例6.1.2另一个简单的随机时间列序被称为随机游走(random walk),

24、该序列由如下随机过程生成:Xt=Xt-1+t 这里, t是一个白噪声。,该序列常被称为是一个白噪声(white noise)。由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。,为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知X1=X0+1X2=X1+2=X0+1+2 Xt=X0+1+2+t由于X0为常数,t是一个白噪声,因此Var(Xt)=t2即Xt的方差与时间t有关而非常数,它是一非平稳序列。,容易知道该序列有相同的均值:E(Xt)=E(Xt-1),然而,对X取一阶差分(first difference):Xt=Xt-Xt-1=t 由于t是一个白噪

25、声,则序列Xt是平稳的。,后面将会看到:如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列。事实上,随机游走过程是下面我们称之为1阶自回归AR(1)过程的特例Xt=Xt-1+t 不难验证:1)|1时,该随机过程生成的时间序列是发散的,表现为持续上升(1)或持续下降(-1),因此是非平稳的;,第二节中将证明:只有当-11时,该随机过程才是平稳的。,2)=1时,是一个随机游走过程,也是非平稳的。,1阶自回归过程AR(1)又是如下k阶自回归AR(K)过程的特例:Xt= 1Xt-1+2Xt-2+kXt-k 该随机过程平稳性条件将在第二节中介绍。,三、平稳性检验的图示判断,给出一个随机时

26、间序列,首先可通过该序列的时间路径图来粗略地判断它是否是平稳的。 一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程; 而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。,进一步的判断:检验样本自相关函数及其图形,定义随机时间序列的自相关函数(autocorrelation function, ACF)如下:k=k/0 自相关函数是关于滞后期k的递减函数(Why?)。实际上,对一个随机过程只有一个实现(样本),因此,只能计算样本自相关函数(Sample autocorrelation function)。,一个时间序列的样本自相关函数定义为:,易知,随

27、着k的增加,样本自相关函数下降且趋于零。但从下降速度来看,平稳序列要比非平稳序列快得多。,注意:,确定样本自相关函数rk某一数值是否足够接近于0是非常有用的,因为它可检验对应的自相关函数k的真值是否为0的假设。Bartlett曾证明:如果时间序列由白噪声过程生成,则对所有的k0,样本自相关系数近似地服从以0为均值,1/n 为方差的正态分布,其中n为样本数。也可检验对所有k0,自相关系数都为0的联合假设,这可通过如下QLB统计量进行:,该统计量近似地服从自由度为m的2分布(m为滞后长度)。因此:如果计算的Q值大于显著性水平为的临界值,则有1-的把握拒绝所有k(k0)同时为0的假设。,四、平稳性的

28、单位根检验,对时间序列的平稳性除了通过图形直观判断外,运用统计量进行统计检验则是更为准确与重要的。单位根检验(unit root test)是统计检验中普遍应用的一种检验方法。 1、DF检验 我们已知道,随机游走序列Xt=Xt-1+t 是非平稳的,其中t是白噪声。 而该序列可看成是随机模型Xt=Xt-1+t 中参数=1时的情形。,也就是说,我们对式 Xt=Xt-1+t (*) 做回归,如果确实发现=1,就说随机变量Xt有一个单位根。,(*)式可变形式成差分形式:Xt=(-1)Xt-1+ t=Xt-1+ t (*),检验(*)式是否存在单位根=1,也可通过(*)式判断是否有 =0。,一般地:,检

29、验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型Xt=+Xt-1+t (*) 中的参数是否小于1。,或者:检验其等价变形式Xt=+Xt-1+t (*) 中的参数是否小于0 。,在第二节中将证明,(*)式中的参数1或=1时,时间序列是非平稳的;对应于(*)式,则是0或 =0。,因此,针对式 Xt=+Xt-1+t 我们关心的检验为:零假设 H0:=0。备择假设 H1:0,上述检验可通过OLS法下的t检验完成。然而,在零假设(序列非平稳)下,即使在大样本下t统计量也是有偏误的(向下偏倚),通常的t 检验无法使用。Dicky和Fuller于1976年提出了这一情形下t统计量服从的分布(

30、这时的t统计量称为统计量),即DF分布(见表8.1.3)。 由于t统计量的向下偏倚性,它呈现围绕小于零值的偏态分布。,因此,可通过OLS法估计Xt=+Xt-1+t 并计算t统计量的值,与DF分布表中给定显著性水平下的临界值比较:如果:t临界值,则拒绝零假设H0: =0, 认为时间序列不存在单位根,是平稳的。,进一步的问题:在上述使用Xt=+Xt-1+t 对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(

31、autocorrelation),导致DF检验无效。另外,如果时间序列包含有明显的随时间变化的某种趋势(如上升或下降),则也容易导致上述检验中的自相关随机误差项问题。为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,形成了ADF(Augment Dickey-Fuller )检验。,2、ADF检验,ADF检验是通过下面三个模型完成的:,模型3 中的t是时间变量,代表了时间序列随时间变化的某种趋势(如果有的话)。检验的假设都是:针对H1: 0,检验 H0:=0,即存在一单位根。模型1与另两模型的差别在于是否包含有常数项和趋势项。,实际检验时从模型3开始,然后

32、模型2、模型1。,何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时检验停止。否则,就要继续检验,直到检验完模型1为止。检验原理与DF检验相同,只是对模型1、2、3进行检验时,有各自相应的临界值。表6.1.4给出了三个模型所使用的ADF分布临界值表。,例6.1.6 检验19782000年间中国GDP时间序列的平稳性。,1)经过偿试,模型3取了2阶滞后:,通过拉格朗日乘数检验(Lagrange multiplier test)对随机误差项的自相关性进行检验: LM(1)=0.92, LM(2)=4.16, 小于5%显著性水平下自由度分别为1与2的2分布的临界值,可见不存在自相关性,因此该

33、模型的设定是正确的。 从的系数看,t临界值,不能拒绝存在单位根的零假设。 时间T的t统计量小于ADF分布表中的临界值,因此不能拒绝不存在趋势项的零假设。需进一步检验模型2 。,2)经试验,模型2中滞后项取2阶:,LM检验表明模型残差不存在自相关性,因此该模型的设定是正确的。从GDPt-1的参数值看,其t统计量为正值,大于临界值,不能拒绝存在单位根的零假设。常数项的t统计量小于AFD分布表中的临界值,不能拒绝不存常数项的零假设。需进一步检验模型1。,3)经试验,模型1中滞后项取2阶:,LM检验表明模型残差项不存在自相关性,因此模型的设定是正确的。从GDPt-1的参数值看,其t统计量为正值,大于临

34、界值,不能拒绝存在单位根的零假设。可断定中国GDP时间序列是非平稳的。,例6.1.7 检验2.3中关于人均居民消费与人均国内生产总值这两时间序列的平稳性。,1)对中国人均国内生产总值GDPPC来说,经过偿试,三个模型的适当形式分别为,三个模型中参数的估计值的t统计量均大于各自的临界值,因此不能拒绝存在单位根的零假设。结论:人均国内生产总值(GDPPC)是非平稳的。,2)对于人均居民消费CPC时间序列来说,三个模型的适当形式为,三个模型中参数CPCt-1的t统计量的值均比ADF临界值表中各自的临界值大,不能拒绝该时间序列存在单位根的假设, 因此,可判断人均居民消费序列CPC是非平稳的。,五、单整

35、、趋势平稳与差分平稳随机过程,随机游走序列Xt=Xt-1+t 经差分后等价地变形为Xt=t由于t是一个白噪声,因此差分后的序列Xt是平稳的。,单整,一般地,如果一个时间序列经过d次差分后变成平稳序列,则称原序列是d 阶单整(integrated of d)序列,记为I(d)。显然,I(0)代表一平稳时间序列。 现实经济生活中: 1)只有少数经济指标的时间序列表现为平稳的,如利率等; 2)大多数指标的时间序列是非平稳的,如一些价格指数常常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶单整。 大多数非平稳的时间序列一般可通过一次或多次差分的形式变为平稳的。 但也有一些时间序列,无论经过多

36、少次差分,都不能变为平稳的。这种序列被称为非单整的(non-integrated)。,如果一个时间序列经过一次差分变成平稳的,就称原序列是一阶单整(integrated of 1)序列,记为I(1)。,例6.1.8 中国GDP的单整性。,经过试算,发现中国GDP是1阶单整的,适当的检验模型为,例6.1.9 中国人均居民消费与人均国内生产总值的单整性。,经过试算,发现中国人均国内生产总值GDPPC是2阶单整的,适当的检验模型为,同样地,CPC也是2阶单整的,适当的检验模型为, 趋势平稳与差分平稳随机过程,前文已指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的

37、关联关系,这时对这些数据进行回归,尽管有较高的R2,但其结果是没有任何实际意义的。这种现象我们称之为虚假回归或伪回归(spurious regression)。如:用中国的劳动力时间序列数据与美国GDP时间序列作回归,会得到较高的R2 ,但不能认为两者有直接的关联关系,而只不过它们有共同的趋势罢了,这种回归结果我们认为是虚假的。,为了避免这种虚假回归的产生,通常的做法是引入作为趋势变量的时间,这样包含有时间趋势变量的回归,可以消除这种趋势性的影响。,然而这种做法,只有当趋势性变量是确定性的(deterministic)而非随机性的(stochastic),才会是有效的。换言之,如果一个包含有某

38、种确定性趋势的非平稳时间序列,可以通过引入表示这一确定性趋势的趋势变量,而将确定性趋势分离出来。,1)如果=1,=0,则(*)式成为一带位移的随机游走过程:Xt=+Xt-1+t (*) 根据的正负,Xt表现出明显的上升或下降趋势。这种趋势称为随机性趋势(stochastic trend)。2)如果=0,0,则(*)式成为一带时间趋势的随机变化过程:Xt=+t+t (*)根据的正负,Xt表现出明显的上升或下降趋势。这种趋势称为确定性趋势(deterministic trend)。,考虑如下的含有一阶自回归的随机过程:Xt=+t+Xt-1+t (*) 其中:t是一白噪声,t为一时间趋势。,3) 如

39、果=1,0,则Xt包含有确定性与随机性两种趋势。,判断一个非平稳的时间序列,它的趋势是随机性的还是确定性的,可通过ADF检验中所用的第3个模型进行。该模型中已引入了表示确定性趋势的时间变量t,即分离出了确定性趋势的影响。 因此,(1)如果检验结果表明所给时间序列有单位根,且时间变量前的参数显著为零,则该序列显示出随机性趋势;(2)如果没有单位根,且时间变量前的参数显著地异于零,则该序列显示出确定性趋势。,随机性趋势可通过差分的方法消除,如:对式 Xt=+Xt-1+t 可通过差分变换为Xt= +t 该时间序列称为差分平稳过程(difference stationary process);,确定性

40、趋势无法通过差分的方法消除,而只能通过除去趋势项消除,,如:对式Xt=+t+t 可通过除去t变换为Xt - t =+t 该时间序列是平稳的,因此称为趋势平稳过程(trend stationary process)。最后需要说明的是,趋势平稳过程代表了一个时间序列长期稳定的变化过程,因而用于进行长期预测则是更为可靠的。,6.2 随机时间序列分析模型,一、时间序列模型的基本概念及其适用性 二、随机时间序列模型的平稳性条件 三、随机时间序列模型的识别,经典计量经济学模型与时间序列模型 确定性时间序列模型与随机性时间序列模型,一、时间序列模型的基本概念及其适用性,1、时间序列模型的基本概念,随机时间序

41、列模型(time series modeling)是指仅用它的过去值及随机扰动项所建立起来的模型,其一般形式为Xt=F(Xt-1, Xt-2, , t)建立具体的时间序列模型,需解决如下三个问题:(1)模型的具体形式(2)时序变量的滞后期(3)随机扰动项的结构例如,取线性方程、一期滞后以及白噪声随机扰动项( t =t),模型将是一个1阶自回归过程AR(1):Xt=Xt-1+ t 这里, t特指一白噪声。,一般的p阶自回归过程AR(p)是Xt=1Xt-1+ 2Xt-2 + + pXt-p + t (*),(1)如果随机扰动项是一个白噪声(t=t),则称(*)式为一纯AR(p)过程(pure AR

42、(p) process),记为Xt=1Xt-1+ 2Xt-2 + + pXt-p +t(2)如果t不是一个白噪声,通常认为它是一个q阶的移动平均(moving average)过程MA(q):t=t - 1t-1 - 2t-2 - - qt-q该式给出了一个纯MA(q)过程(pure MA(p) process)。,将纯AR(p)与纯MA(q)结合,得到一个一般的自回归移动平均(autoregressive moving average)过程ARMA(p,q):,Xt=1Xt-1+ 2Xt-2 + + pXt-p + t - 1t-1 - 2t-2 - - qt-q,该式表明: (1)一个随机

43、时间序列可以通过一个自回归移动平均过程生成,即该序列可以由其自身的过去或滞后值以及随机扰动项来解释。 (2)如果该序列是平稳的,即它的行为并不会随着时间的推移而变化,那么我们就可以通过该序列过去的行为来预测未来。这也正是随机时间序列分析模型的优势所在。,经典回归模型的问题:迄今为止,对一个时间序列Xt的变动进行解释或预测,是通过某个单方程回归模型或联立方程回归模型进行的,由于它们以因果关系为基础,且具有一定的模型结构,因此也常称为结构式模型(structural model)。然而,如果Xt波动的主要原因可能是我们无法解释的因素,如气候、消费者偏好的变化等,则利用结构式模型来解释Xt的变动就比

44、较困难或不可能,因为要取得相应的量化数据,并建立令人满意的回归模型是很困难的。有时,即使能估计出一个较为满意的因果关系回归方程,但由于对某些解释变量未来值的预测本身就非常困难,甚至比预测被解释变量的未来值更困难,这时因果关系的回归模型及其预测技术就不适用了。,2、时间序列分析模型的适用性,例如,时间序列过去是否有明显的增长趋势,如果增长趋势在过去的行为中占主导地位,能否认为它也会在未来的行为里占主导地位呢?或者时间序列显示出循环周期性行为,我们能否利用过去的这种行为来外推它的未来走向?随机时间序列分析模型,就是要通过序列过去的变化特征来预测未来的变化趋势。使用时间序列分析模型的另一个原因在于:

45、如果经济理论正确地阐释了现实经济结构,则这一结构可以写成类似于ARMA(p,q)式的时间序列分析模型的形式。,在这些情况下,我们采用另一条预测途径:通过时间序列的历史数据,得出关于其过去行为的有关结论,进而对时间序列未来行为进行推断。,例如,对于如下最简单的宏观经济模型:,这里,Ct、It、Yt分别表示消费、投资与国民收入。Ct与Yt作为内生变量,它们的运动是由作为外生变量的投资It的运动及随机扰动项t的变化决定的。,上述模型可作变形如下:,两个方程等式右边除去第一项外的剩余部分可看成一个综合性的随机扰动项,其特征依赖于投资项It的行为。如果It是一个白噪声,则消费序列Ct就成为一个1阶自回归

46、过程AR(1),而收入序列Yt就成为一个(1,1)阶的自回归移动平均过程ARMA(1,1)。,二、随机时间序列模型的平稳性条件,自回归移动平均模型(ARMA)是随机时间序列分析模型的普遍形式,自回归模型(AR)和移动平均模型(MA)是它的特殊情况。关于这几类模型的研究,是时间序列分析的重点内容:主要包括模型的平稳性分析、模型的识别和模型的估计。,1、AR(p)模型的平稳性条件,随机时间序列模型的平稳性,可通过它所生成的随机时间序列的平稳性来判断。如果一个p阶自回归模型AR(p)生成的时间序列是平稳的,就说该AR(p)模型是平稳的,否则,就说该AR(p)模型是非平稳的。,考虑p阶自回归模型AR(

47、p) Xt=1Xt-1+ 2Xt-2 + + pXt-p +t (*),引入滞后算子(lag operator )L:LXt=Xt-1, L2Xt=Xt-2, , LpXt=Xt-p (*)式变换为(1-1L- 2L2-pLp)Xt=t,记(L)= (1-1L- 2L2-pLp),则称多项式方程(z)= (1-1z- 2z2-pzp)=0 为AR(p)的特征方程(characteristic equation)。可以证明,如果该特征方程的所有根在单位圆外(根的模大于1),则AR(p)模型是平稳的。,例8.2.1 AR(1)模型的平稳性条件。,对1阶自回归模型AR(1),由于Xt仅与t相关,因此

48、,E(Xt-1t)=0。如果该模型平稳定,则有E(Xt2)=E(Xt-12),从而上式可变换为:,在稳定条件下,该方差是一非负的常数,从而有 |1。,而AR(1)的特征方程,的根为 z=1/ AR(1)稳定,即 | 1,意味着特征根大于1。,对高阶自回模型AR(p)来说,多数情况下没有必要直接计算其特征方程的特征根,但有一些有用的规则可用来检验高阶自回归模型的稳定性:,(1)AR(p)模型稳定的必要条件是:1+2+p1(2)由于i(i=1,2,p)可正可负,AR(p)模型稳定的充分条件是:|1|+|2|+|p|1,对于移动平均模型MR(q):Xt=t - 1t-1 - 2t-2 - - qt-q 其中t是一个白噪声,于是,2、MA(q)模型的平稳性,当滞后期大于q时,Xt的自协方差系数为0。 因此:有限阶移动平均模型总是平稳的。,由于ARMA (p,q)模型是AR(p)模型与MA(q)模型的组合: Xt=1Xt-1+ 2Xt-2 + + pXt-p + t - 1t-1 - 2t-2 - - qt-q,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报