收藏 分享(赏)

线性代数课件4-2.ppt

上传人:j35w19 文档编号:8237699 上传时间:2019-06-16 格式:PPT 页数:15 大小:466KB
下载 相关 举报
线性代数课件4-2.ppt_第1页
第1页 / 共15页
线性代数课件4-2.ppt_第2页
第2页 / 共15页
线性代数课件4-2.ppt_第3页
第3页 / 共15页
线性代数课件4-2.ppt_第4页
第4页 / 共15页
线性代数课件4-2.ppt_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、2 向量组的线性相关性,回顾:向量组的线性组合,定义:给定向量组 A:a1, a2, , am , 对于任何一组实数 k1,k2, , km ,表达式 k1a1 + k2a2 + + kmam 称为向量组 A 的一个线性组合 k1, k2, , km 称为这个线性组合的系数 定义:给定向量组 A:a1, a2, , am 和向量 b,如果存在一组 实数 l1, l2, , lm ,使得 b = l1a1 + l2a2 + + lmam 则称向量 b 能由向量组 A 的线性表示,引言,问题1:给定向量组 A,零向量是否可以由向量组 A 线性表示? 问题2:如果零向量可以由向量组 A 线性表示,线

2、性组合的系数是否不全为零?,向量b 能由 向量组 A 线性表示,线性方程组 Ax = b 有解,P.83 定理1 的结论:,问题1:给定向量组 A,零向量是否可以由向量组 A 线性表示? 问题1:齐次线性方程组 Ax = 0 是否存在解? 回答:齐次线性方程组 Ax= 0 一定存在解 事实上,可令k1 = k2 = = km =0 ,则 k1a1 + k2a2 + + kmam =0(零向量),问题2:如果零向量可以由向量组 A 线性表示,线性组合的系数是否不全为零? 问题2:齐次线性方程组 Ax = 0 是否存在非零解? 回答:齐次线性方程组不一定有非零解,从而线性组合的系数不一定全等于零,

3、例:设,若,则 k1 = k2 = k3 =0 ,向量组的线性相关性,定义:给定向量组 A:a1, a2, , am ,如果存在不全为零的实 数 k1, k2, , km ,使得 k1a1 + k2a2 + + kmam =0(零向量) 则称向量组 A 是线性相关的,否则称它是线性无关的,向量组 A:a1, a2, , am 线性相关,m 元齐次线性方程组 Ax = 0 有非零解,R(A) m,备注: 给定向量组 A,不是线性相关,就是线性无关,两者必居其一 向量组 A:a1, a2, , am 线性相关,通常是指 m 2 的情形. 若向量组只包含一个向量:当 a 是零向量时,线性相关;当 a

4、 不是零向量时,线性无关 向量组 A:a1, a2, , am (m 2) 线性相关,也就是向量组 A 中,至少有一个向量能由其余 m1 个向量线性表示特别地, a1, a2 线性相关当且仅当 a1, a2 的分量对应成比例,其几何意义是两向量共线 a1, a2, a3 线性相关的几何意义是三个向量共面,向量组线性相关性的判定(重点、难点) 向量组 A:a1, a2, , am 线性相关存在不全为零的实数 k1, k2, , km ,使得 k1a1 + k2a2 + + kmam =0(零向量) m 元齐次线性方程组 Ax = 0 有非零解矩阵A = (a1, a2, , am ) 的秩小于向

5、量的个数 m 向量组 A 中至少有一个向量能由其余 m1 个向量线性 表示,向量组线性无关性的判定(重点、难点) 向量组 A:a1, a2, , am 线性无关如果 k1a1 + k2a2 + + kmam =0(零向量),则必有 k1 = k2 = = km =0 m 元齐次线性方程组 Ax = 0 只有零解矩阵A = (a1, a2, , am ) 的秩等于向量的个数 m 向量组 A 中任何一个向量都不能由其余 m1 个向量线 性表示,向量组线性相关性的判定(重点、难点) 向量组 A:a1, a2, , am 线性相关存在不全为零的实数 k1, k2, , km ,使得 k1a1 + k2

6、a2 + + kmam =0(零向量) m 元齐次线性方程组 Ax = 0 有非零解矩阵A = (a1, a2, , am ) 的秩小于向量的个数 m 向量组 A 中至少有一个向量能由其余 m1 个向量线性 表示,向量组线性无关性的判定(重点、难点) 向量组 A:a1, a2, , am 线性无关如果 k1a1 + k2a2 + + kmam =0(零向量),则必有 k1 = k2 = = km =0 m 元齐次线性方程组 Ax = 0 只有零解矩阵A = (a1, a2, , am ) 的秩等于向量的个数 m 向量组 A 中任何一个向量都不能由其余 m1 个向量线 性表示,例:试讨论 n 维

7、单位坐标向量组的线性相关性,例:已知试讨论向量组 a1, a2, a3 及向量组a1, a2 的线性相关性解:可见 R(a1, a2, a3 ) = 2,故向量组 a1, a2, a3 线性相关; 同时,R(a1, a2 ) = 2,故向量组 a1, a2 线性无关,例:已知向量组 a1, a2, a3 线性无关,且 b1 = a1+a2, b2 = a2+a3, b3 = a3+a1, 试证明向量组 b1, b2, b3 线性无关解题思路: 转化为齐次线性方程组的问题; 转化为矩阵的秩的问题,例:已知向量组 a1, a2, a3 线性无关,且 b1 = a1+a2, b2 = a2+a3,

8、b3 = a3+a1, 试证明向量组 b1, b2, b3 线性无关解法1:转化为齐次线性方程组的问题已知 ,记作 B = AK 设 Bx = 0 ,则(AK)x = A(Kx) = 0 因为向量组 a1, a2, a3 线性无关,所以Kx = 0 又 |K| = 2 0,那么Kx = 0 只有零解 x = 0 , 从而向量组 b1, b2, b3 线性无关,例:已知向量组 a1, a2, a3 线性无关,且 b1 = a1+a2, b2 = a2+a3, b3 = a3+a1, 试证明向量组 b1, b2, b3 线性无关解法2:转化为矩阵的秩的问题已知 ,记作 B = AK 因为|K| =

9、 2 0,所以K 可逆,R(A) = R(B), 又向量组 a1, a2, a3 线性无关, R(A) = 3, 从而R(B) = 3,向量组 b1, b2, b3 线性无关,定理(P.89定理5) 若向量组 A :a1, a2, , am 线性相关, 则向量组 B :a1, a2, , am, am+1 也线性相关其逆否命题也成立,即若向量组 B 线性无关,则向量组 A 也线性无关 m 个 n 维向量组成的向量组,当维数 n 小于向量个数 m 时,一定线性相关特别地, n + 1个 n 维向量一定线性相关 设向量组 A :a1, a2, , am 线性无关, 而向量组 B :a1, a2, , am, b 线性相关,则向量 b 必能由向量组 A 线性表示,且表示式是唯一的,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报