收藏 分享(赏)

黄冈中学初高中衔接教材含答案.doc

上传人:tkhy51908 文档编号:8225746 上传时间:2019-06-15 格式:DOC 页数:101 大小:5.51MB
下载 相关 举报
黄冈中学初高中衔接教材含答案.doc_第1页
第1页 / 共101页
黄冈中学初高中衔接教材含答案.doc_第2页
第2页 / 共101页
黄冈中学初高中衔接教材含答案.doc_第3页
第3页 / 共101页
黄冈中学初高中衔接教材含答案.doc_第4页
第4页 / 共101页
黄冈中学初高中衔接教材含答案.doc_第5页
第5页 / 共101页
点击查看更多>>
资源描述

1、初高中数学衔接教材第一部分 如何做好初高中衔接 1-3 页第二部分 现有初高中数学知识存在的“脱节” 4 页第三部分 初中数学与高中数学衔接紧密的知识点 5-9 页第四部分 分章节讲解 10-66 页 第五部分 衔接知识点的专题强化训练 67-100 页第一部分,如何做好高、初中数学的衔接 第一讲 如何学好高中数学 初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。相

2、当部分学生进入数学学习的“困难期” ,数学成绩出现严重的滑坡现象。渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。下面就对造成这种现象的一些原因加以分析、总结。希望同学们认真吸取前人的经验教训,搞好自己的数学学习。一 高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑

3、运算语言以及以后要学习到的函数语言、空间立体几何等。2 思维方法向理性层次跃迁。高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的、便于操作的定势方式。高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。当然,能力的发展是渐进的,不是一朝一夕的。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初

4、步形成辩证型思维。3 知识内容的整体数量剧增。高中数学在知识内容的“量”上急剧增加了。例如:高一代数第一章就有基本概念52个,数学符号28个;立体几何第一章有基本概念37个,基本公理、定理和推论21个;两者合在一起仅基本概念就达89个之多,并集中在高一第一学期学习,形成了概念密集的学习阶段。加之高中一年级第一学期只有七十多课时,辅助练习、消化的课时相应地减少了。使得数学课时吃紧,因而教学进度一般较快,从而增加了教与学的难度。这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。这就要求:第一,要做好课后的复习工作,记牢大量的知识。第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化

5、于原有知识结构之中。第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好,因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”。如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法。第四,要多做总结、归类,建立主体的知识结构网络。二 不良的学习状态1 学习习惯因依赖心理而滞后。初中生在学习上的依赖心理是很明显的。第一,为提高分数,初中数学教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后辅导也是常事。升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导

6、的能力也跟不上了。许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。2 思想松懈。有些同学把初中的那一套思想移植到高中来。他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,有的还是重点中学里的重点班,因而认为读高中也不过如此。高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的同学是大错特错的。有多少同学就是因为高一、二不努力学习,临近高考了,发现自

7、己缺漏了很多知识再弥补后悔晚矣。3 学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆;课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。4 不重视基础。一些“自我感觉良好”的同学,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平

8、”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。5 进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法、实根分布与参变量的讨论、,三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。三 科学地进行学习高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被

9、动学习为主动学习,才能提高学习成绩。1 培养良好的学习习惯。反复使用的方法将变成人们的习惯。什么是良好的学习习惯?良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。(1)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。(2)课前自学是上好新课、取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思

10、路,把握重点,突破难点,尽可能把问题解决在课堂上。(3)上课是理解和掌握基础知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。(4)及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。

11、这一过程也是对意志毅力的考验,通过运用使对所学知识由“会”到“熟”。(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的知识拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,使所学到的知识由“熟”到“活”。(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知

12、识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。2 循序渐进,防止急躁。由于同学们年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣;有的同学想靠几天“冲刺”一蹴而就;有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。同学们要知道,学习是一个长期地巩固旧知、发现新知的积

13、累过程,决非一朝一夕可以完成的。为什么高中要学三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。3 注意研究学科特点,寻找最佳学习方法。数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理

14、。方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。 第二部分,现有初高中数学知识存在以下“脱节”1立方和与差的公式初中已删去不讲,而高中的运算还在用。2因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。4初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、

15、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。5二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。6图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。7含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。8几何部分很多概念(如重心、

16、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。第三部分 初中数学与高中数学衔接紧密的知识点 1 绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他本身,负数的绝对值是他的相反数,0 的绝对值是 0,即(0)a两个负数比较大小,绝对值大的反而小两个绝对值不等式: ; 或|(0)xaax|(0)axa2 乘法公式:平方差公式: 2()bb立方差公式: 322)aa立方和公式: ()完全平方公式: ,22bb() 2accacb完全立方公式:

17、32233 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法,运用公式法,分组分解法,十字相乘法。4 一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是 1,这样的方程叫一元一次方程。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为 1。关于方程 解的讨论axb当 时,方程有唯一解 ;0bxa当 , 时,方程无解当 , 时,方程有无数解;此时任一实数都是方程的解。ab5 二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。(3)

18、二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。(4)解二元一次方程组的方法:代入消元法,加减消元法。6 不等式与不等式组(1)不等式:用符不等号(、)连接的式子叫不等式。不等式的两边都加上或减去同一个整式,不等号的方向不变。不等式的两边都乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,不等号方向相反。(2)不等式的解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式解集的过程叫做解不等式。(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是 1 的不等式叫一元一次不等

19、式。(4)一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。7 一元二次方程: 20()axbca方程有两个实数根 240c方程有两根同号 12xa方程有两根异号 120cx韦达定理及应用: 1212,ba, 211212()xx 2212114()4bacxx3 21212121211)38 函数(1)变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。(2)一次函数:若

20、两个变量 , 间的关系式可以表示成 ( 为常数, 不等于 0)的形式,则称 是yxykxbky的一次函数。当 =0 时,称 是 的正比例函数。xb(3)一次函数的图象及性质把一个函数的自变量 与对应的因变量 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,xy所有这些点组成的图形叫做该函数的图象。正比例函数 = 的图象是经过原点的一条直线。yk在一次函数中,当 0, O,则经 2、3、4 象限;当 0, 0 时,则经 1、2、4 象限;当 0, kbkbk0 时,则经 1、3、4 象限;当 0, 0 时,则经 1、2、3 象限。b当 0 时, 的值随 值的增大而增大,当 0 时,

21、 的值随 值的增大而减少。kyxkyx(4)二次函数:一般式: ( ),对称轴是2224()bacyaxbcax0,2bxa顶点是 ;24,)a( 顶点式: ( ),对称轴是 顶点是 ;2()yxmk0a,xm,k交点式: ( ),其中( ),( )是抛物线与 x 轴的交点12()a1,02,x(5)二次函数的性质 函数 的图象关于直线 对称。2(0)yaxbc2bxa 时,在对称轴 ( )左侧, 值随 值的增大而减少;在对称轴( )右侧; 的值随02bxay 2bxay值的增大而增大。当 时, 取得最小值xy24cba 时,在对称轴 ( )左侧, 值随 值的增大而增大;在对称轴( )右侧;

22、的值随0a2bxayx 2bxay值的增大而减少。当 时, 取得最大值xy24cba9 图形的对称(1)轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。(2)中心对称图形:在平面内,一个图形绕某个点旋转 180 度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。10 平面直角坐标系(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做 轴或横轴,铅

23、直的数轴x叫做 轴或纵轴, 轴与 轴统称坐标轴,他们的公共原点 称为直角坐标系的原点。yxyO(2)平面直角坐标系内的对称点:设 , 是直角坐标系内的两点,1(,)Mxy2(,)xy若 和 关于 轴对称,则有 。My12若 和 关于 轴对称,则有 。x12xy若 和 关于原点对称,则有 。 12若 和 关于直线 对称,则有 。Myx12xy若 和 关于直线 对称,则有 或 。a12ay21xay11 统计与概率:(1)科学记数法:一个大于 10 的数可以表示成 的形式,其中 大于等于 1 小于 10, 是正整数。0NAAN(2)扇形统计图:用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,

24、扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与 360 度的比。(3)各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。(5)平均数:对于 个数 ,我们把 ( )叫做这个 个数的算术平均数,记为 。N12,Nx 12Nxx x(6)加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。(7)中位数与众数: N 个数据按大小顺序排列,处

25、于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最大的那个数据叫做这个组数据的众数。优劣比较:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。(8)调查:为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。抽样调查只

26、考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。(9)频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。(10)数据的波动:极差是指一组数据中最大数据与最小数据的差。方差是各个数据与平均数之差的平方和的平均数。标准差就是方差的算术平方根。一般来说,一组数据的极差,方差,或标准差越小,这组数据就越稳定。(11)事件的可能性:有些事情我们能确定他一定会发生,这些

27、事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。一般来说,不确定事件发生的可能性是有大小的。(12)概率:人们通常用 1(或 100%)来表示必然事件发生的可能性,用 0 来表示不可能事件发生的可能性。游戏对双方公平是指双方获胜的可能性相同。必然事件发生的概率为 1,记作 (必然事件) ;不可能事件发生P1的概率为 ,记作 (不可能事件) ;如果 A 为不确定事件,那么0P0()A第四部分 分章节突破1.1 数与式的运算1.1.1 绝对值1.1.2 乘法公式1.1.3 二次根

28、式1.1. 分式12 分解因式2.1 一元二次方程2.1.1 根的判别式2.1.2 根与系数的关系(韦达定理)22 二次函数2.2.1 二次函数 y ax2 bx c 的图像和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用2.3 方程与不等式2.3.1 二元二次方程组解法2.3.2 一元二次不等式解法31 相似形3.1.1平行线分线段成比例定理3.1.2 相似形3.2 三角形3.2.1 三角形的“四心”3.2.2 几种特殊的三角形33 圆3.3.1 直线与圆,圆与圆的位置关系3.3.2 点的轨迹1.1 数与式的运算1.1绝对值绝对值的代数意义:正数的绝对值是它的本身,负数

29、的绝对值是它的相反数,零的绝对值仍是零即,0,|,.a绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离 两个数的差的绝对值的几何意义: 表示在数轴上,数 和数 之间的距离baab例 1 解不等式: 413x解法一:由 ,得 ;由 ,得 ;00x3x若 ,不等式可变为 ,x()4即 4,解得 x0 ,2又 x1,x0;若 ,不等式可变为 ,(1)34x即 14,不存在满足条件的 x;若 ,不等式可变为 ,3x()即 4, 解得 x42又 x3,x 4综上所述,原不等式的解为x0,或 x4解法二:如图 111, 表示 x 轴上坐标为 x 的点 P 到坐标为 1 的点 A 之间的距离

30、| PA|,即|PA|x1|;|x 3|表示 x 轴上点 P 到坐标为 2 的点 B 之间的距离|PB|,即| PB|x3|所以,不等式 4 的几何3 意义即为|PA|PB|4由|AB|2,可知点 P 在点 C(坐标为0)的左侧、或点 P 在点 D(坐标为 4)的右 侧x0,或 x4练 习1填空:(1)若 ,则 x=_;若 ,则 x=_.54x(2)如果 ,且 ,则 b_;若 ,则 c_.ba1a212选择题:下列叙述正确的是 ( )(A)若 ,则 (B )若 ,则 ab(C)若 ,则 (D)若 ,则ab3化简:|x5|2 x 13|(x5) 1.1.2. 乘法公式我们在初中已经学习过了下列一

31、些乘法公式:(1)平方差公式 ;2()abab(2)完全平方公式 2我们还可以通过证明得到下列一些乘法公式:1 3A Bx0 4C DxP|x 1|x 3|图 111(1)立方和公式 ;223()abab(2)立方差公式 ;(3)三数和平方公式 ;22()ccca(4)两数和立方公式 ;33()(5)两数差立方公式 22abab对上面列出的五个公式,有兴趣的同学可以自己去证明例 1 计算: 22(1)(1)()xxx解法一:原式= 2= 42= 6x解法二:原式= 2(1)(1)x= 3= 6例 2 已知 , ,求 的值4abc4abc22abc解: 22()()8练 习1填空:(1) ( )

32、 ;21()943aba(2) ;(m264(m)(3) 2)cc2选择题:(1)若 是一个完全平方式,则 等于 ( )2xkk(A) (B ) (C) (D)214213m216m(2)不论 , 为何实数, 的值 ( )ab8ab(A)总是正数 (B)总是负数 (C)可以是零 (D)可以是正数也可以是负数1.1.3二次根式一般地,形如 的代数式叫做二次根式根号下含有字母、且不能够开得尽方的式子称为(0)a无理式. 例如 , 等是无理式,而 , , 等是23b2ab21x22xya有理式1分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化为了进行分母(子)有理化,需要引入有理化因式

33、的概念两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如 与 , 与 , 与 , 与 ,23a362323等等 一般地, 与 , 与 , 与 互为有理化因式axaxbyxbyaxb分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行(0,)abb运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上

34、去括号与合并同类二次根式2二次根式 的意义2a,0,.例 1 将下列式子化为最简二次根式:(1) ; (2) ; (3) b2(0)ab64(0)xy解: (1) ;3(2) ;2a(3) 6334()xyxy例 2 计算: ()解法一: 3 ()3 9 3(1)6 2解法二: 3()3 (1) 3 (1) 2例 3 试比较下列各组数的大小:(1) 和 ; (2) 和 .21106426、解: (1) ,(1)()1,1000又 ,2 1(2) 6(2)(26)2,1、+、 +又 422,64622, .26、例 4 化简: 04205(3)(3)解: 204205(3)(3) 4(3) 20

35、 2041(3) 例 5 化简:(1) ; (2) 94521(01)xx解:(1)原式 22(5)5(2)原式= ,2()x1 ,01 ,所以,原式 x例 6 已知 ,求 的值 3232,xy2253xy解: ,()()10y,321x 2225()3089yxy练 习1填空:(1) _ _;3(2)若 ,则 的取值范围是_ _ _;2(5)(3)5xxx(3) _ _;46910(4)若 ,则 _ _12选择题:等式 成立的条件是 ( )2x(A) (B ) (C) (D)0x2x02x3若 ,求 的值21abab4比较大小:23 54(填“”,或“ ”) 1.1.分式1分式的意义形如 的

36、式子,若 B 中含有字母,且 ,则称 为分式当 M0时,分式 具有下列性质:A0BAAB; MB上述性质被称为分式的基本性质2繁分式像 , 这样,分子或分母中又含有分式的分式叫做繁分式abcd2mnp例 1 若 ,求常数 的值54()2xABx,AB解: ,()()254()x 5,24A解得 ,3B例 2 (1)试证: (其中 n 是正整数) ;1()1n(2)计算: ;2390( 3) 证 明 : 对 任 意 大 于 1 的 正 整 数 n, 有 11234()2n(1)证明: ,1()()n (其中 n 是正整数)成立()1(2)解:由(1)可知23901()()1 0(3)证明: 23

37、4()n 11() ,又 n2,且 n 是正整数,1n1 一定为正数, 121234()例 3 设 ,且 e1,2c 25ac 2a 20,求 e 的值a解:在 2c2 5ac2a 20 两边同除以 a2,得2e2 5e20,(2e 1)(e2)0,e121,舍去;或 e2e2练 习1填空题:对任意的正整数 n, ( );()12n2选择题:若 ,则 ( )23xyx(A) ( B) (C) (D)5445653正数 满足 ,求 的值,xy2xy4计算 11.3910习题 11A 组1解不等式: (1) ; (2) ;3x327x(3) 16已知 ,求 的值y3xy3填空:(1) _;1819

38、(2)()(2)若 ,则 的取值范围是_;22aa(3) _13456B 组1填空: (1) , ,则 _ _;2a13b225ab(2)若 ,则 _ _;20xy3xy2已知: ,求 的值1,23xyyxyC 组1选择题:(1)若 ,则 ( )abba(A) ( B) (C) (D )0b0ba(2)计算 等于 ( )1(A) (B ) (C) (D)aaa2解方程 2()3()10xx3计算: 14594试证:对任意的正整数 n,有 1411234()2n1.1.1绝对值1 (1) ; (2) ; 或 2D 33x1854131.1.2乘法公式1 (1) (2) (3) 3ab,44abc

39、2 (1)D (2)A1.1.3二次根式1 (1) (2) (3) (4) 5x8652C 31 41.1.4分式112 2B 3 4910习题 11A 组1 (1) 或 (2)4x3 (3)x3,或 x3x21 3 (1) (2) (3) a6B 组1 (1) (2) ,或15 2475C 组1 (1)C (2)C 2 312,x654提示: 1()()(2)nnn12 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法1十字相乘法例 1 分解因式:(1)x 23x 2; (2)x 24x12;(3) ; (4) ()aby1y解:(1

40、)如图 121,将二次项 x2 分解成图中的两个 x 的积,再将常数项 2 分解成1 与2的乘积,而图中的对角线上的两个数乘积的和为3x,就是 x23x2 中的一次项,所以,有x23x2(x1)( x2)说明:今后在分解与本例类似的二次三项式时,可以直接将图 121 中的两个 x 用 1 来表示(如图 122 所示) (2)由图 123,得x24x12(x2)( x6)(3)由图 124,得2)aby()ayb(4) xy (xy)1x(x1) (y+1) (如图 1 25 所示) 2提取公因式法与分组分解法例 2 分解因式:(1) ; (2) 329xx22456xyxy解: (1) = =

41、3()(9)(3)()= ()或 329xx32(1)8x3()8x3(1)2x (1) 2(2) =456yy22(4)56yy= = ()()3x 3)x或 =22x22()(x= ()(45)6yy= 3x3关于 x 的二次三项式 ax2+bx+c(a0)的因式分解12xx图 1211211图 1222611图 123aybyxx图 12411xy图 125若关于 x 的方程 的两个实数根是 、 ,则二次三项式 就可20()abxca1x22(0)axbc分解为 .1()a例 3 把下列关于 x 的二次多项式分解因式:(1) ; (2) 2 224xy解: (1)令 =0,则解得 , ,

42、1121 =2x()()xx= 2(2)令 =0,则解得 , ,224xy1(2)xy1(2)xy = ()xy练 习1选择题:多项式 的一个因式为 ( )2215xy(A) (B) (C) (D)3xy3xy5xy2分解因式:(1)x 26x8; (2)8a 3b 3;(3)x 22x1; (4) (1)(2)xyx习题 121分解因式:(1) ; (2) ; 3a439x(3) ; (4) 22bcacb2254yxy2在实数范围内因式分解:(1) ; (2) ; 253x 3x(3) ; (4) 24y2()7()12x3 三边 , , 满足 ,试判定 的形状ABCabc22abcabc

43、ABC4分解因式:x 2x (a 2a)1.2 分解因式1 B 2 (1)(x2)( x4) (2) 22()4)abab(3) (4) 2)(1)yx习题 121 (1) (2) 21a321xx(3) (4) bca4yy2 (1) ; (2) ;535xx 525(3) ; (4) 2773yy3(1)(1)xx3等边三角形4 (1)(xa2.1 一元二次方程2.1.1 根的判别式我们知道,对于一元二次方程 ax2bxc 0(a0) ,用配方法可以将其变形为 24()bax因为 a0,所以,4a 20于是(1)当 b24ac0 时,方程的右端是一个正数,因此,原方程有两个不相等的实数根x

44、1,2 ;ca(2)当 b24ac0 时,方程的右端为零,因此,原方程有两个等的实数根x1x 2 ;(3)当 b24ac0 时,方程的右端是一个负数,而方程的左边 一定大于或等于零,因此,原方程2()bxa没有实数根由此可知,一元二次方程 ax2bxc 0(a0)的根的情况可以由 b24ac 来判定,我们把 b24ac 叫做一元二次方程 ax2bxc 0(a0 )的根的判别式,通常用符号“” 来表示综上所述,对于一元二次方程 ax2bxc0(a0) ,有(1) 当 0 时,方程有两个不相等的实数根x1,2 ;4b(2)当 0 时,方程有两个相等的实数根x1x 2 ;a(3)当 0 时,方程没有实数根例 1 判定下列关于 x 的方程的根的情况(其中 a 为常数) ,如果方程有实数根,写出方程的实数根(1)x 23x30; (2)x 2ax10; (3) x2ax(a1)0; (4)x 22xa0解:(1)3 241330,方程没有实数根(2)该

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报