收藏 分享(赏)

材料科学基础-第5章材料的力学性能.ppt

上传人:11xg27ws 文档编号:8025387 上传时间:2019-06-04 格式:PPT 页数:90 大小:2.61MB
下载 相关 举报
材料科学基础-第5章材料的力学性能.ppt_第1页
第1页 / 共90页
材料科学基础-第5章材料的力学性能.ppt_第2页
第2页 / 共90页
材料科学基础-第5章材料的力学性能.ppt_第3页
第3页 / 共90页
材料科学基础-第5章材料的力学性能.ppt_第4页
第4页 / 共90页
材料科学基础-第5章材料的力学性能.ppt_第5页
第5页 / 共90页
点击查看更多>>
资源描述

1、1,材料科学基础,Chapter 5 材料的力学性能,李谦 宁向梅主讲,2,Chapter Outline,5.1 材料承受静载荷时的力学性能 5.2 材料承受冲击载荷时的力学性能 5.3 材料的疲劳 5.4 材料的断裂韧性 5.5 材料的磨损性能 5.6 材料的蠕变性能,3,Technological Significance,Figure The materials used in sports equipment must be lightweight, stiff, tough, and impact resistant.,Figure Aircraft, such as the on

2、e shown here, makes use of aluminum alloys and carbon-fiber-reinforced composites.,4,Terminology for Mechanical Properties,Stress - Force or load per unit area of cross-section over which the force or load is acting.Strain - Elongation change in dimension per unit length.Youngs modulus - The slope o

3、f the linear part of the stress-strain curve in the elastic region, same as modulus of elasticity.Shear modulus (G) - The slope of the linear part of the shear stress-shear strain curve.,5,Figure (a) Tensile, compressive, shear and bending stresses. (b) Illustration showing how Youngs modulus is def

4、ined for elastic material. (c) For nonlinear materials, we use the slope of a tangent as a variable quantity that replaces the Youngs modulus constant,6,Section 5.1 材料承受静载荷时的力学性能 5.1.1 材料的拉伸曲线,Load - The force applied to a material during testing. Strain gage or Extensometer - A device used for meas

5、uring change in length and hence strain. Engineering stress - The applied load, or force, divided by the original cross-sectional area of the material. Engineering strain - The amount that a material deforms per unit length in a tensile test.,7,5.1.1 材料的拉伸曲线,单向静拉伸试验是广泛应用的材料性能检测方法。 负荷-伸长曲线。 整个拉伸过程中的变

6、形可分为弹性变形、屈服变形、均匀塑性变形及不均匀塑性变形四个阶段。 应力应变曲线(工程应力应变曲线) 真实应力应变曲线,8,9,Figure A unidirectional force is applied to a specimen in the tensile test by means of the moveable crosshead. The cross-head movement can be performed using screws or a hydraulic mechanism,10,Figure Tensile stress-strain curves for dif

7、ferent materials. Note that these are qualitative,11,Figure The stress-strain curve for an aluminum alloy,12,13,True Stress and True Strain,True stress The load divided by the actual cross-sectional area of the specimen at that load. True strain The strain calculated using actual and not original di

8、mensions, given by t ln(l/l0).,Figure The relation between the true stress-true strain diagram and engineering stress-engineering strain diagram. The curves are identical to the yield point,14,5.1.2 材料的变形及其性能指标,Elastic limit Tensile strength, Necking Hookes law Poissons ratio Modulus of resilience (

9、Er) Tensile toughness Ductility,15,5.1.2 材料的变形及其性能指标,材料变形的实质 弹性变形的实质 塑性变形的实质 超塑性 2.材料变形的性能指标 比例极限p 弹性极限(Elastic limit) e 弹性模量E 屈服极限s (0.2) 抗拉强度(Tensile strength )b 断裂强度Sk 延伸率 断面收缩率,16,Figure (a) Determining the 0.2% offset yield strength in gray cast ion, and (b) upper and lower yield point behavior

10、 in a low-carbon steel,17,Figure Localized deformation of a ductile material during a tensile test produces a necked region. The micrograph shows necked region in a fractured sample,18,Figure Typical yield strength values for different engineered materials. (Source: Reprinted from Engineering Materi

11、als I, Second Edition, M.F. Ashby and D.R.H. Jones, 1996, Fig. 8-12, p. 85. Copyright Butterworth-Heinemann,19,Figure Range of elastic moduli for different engineered materials. (Source: Reprinted from Engineering Materials I, Second Edition, M.F. Ashby and D.R.H. Jones, 1996, Fig. 3-5, p. 35, Copyr

12、ight 1996 Butterworth-Heinemann.,20,21,5.1.3 材料的断裂及其性能指标,(一)断裂的类型及断口特征 1韧性断裂与脆性断裂 韧性断裂是材料断裂前产生明显塑性变形的断裂过程。断口往往呈暗灰色、纤维状。塑性较好的金属材料和高分子材料,室温下的静拉伸断裂具有典型的韧性断裂特征。 脆性断裂是材料断裂前不产生明显的塑性变形。断口一般与正应力垂直,宏观上比较齐平光亮,常呈放射状或结晶状(如淬火钢、灰铸铁、陶瓷、玻璃等脆性材料的断口。 规定光滑拉伸试样的断面收缩率小于5为脆性断裂;大于5为韧性断裂。,22,5.1.3 材料的断裂及其性能指标,2穿晶断裂与沿晶断裂 穿晶

13、断裂(Transgranular)可以是韧性断裂,也可以是脆性断裂;离子键晶体的断裂往往以穿晶解理为主。 沿晶断裂(Intergranular)则多为脆性断裂,断口呈结晶状;沿晶断裂是晶界结合力较弱的一种表现。共价键陶瓷晶界较弱,断裂方式主要是晶界断裂。,图56 穿晶断裂与沿晶断裂示意图,23,5.1.3 材料的断裂及其性能指标,3剪切断裂与解理断裂 (1)剪切断裂 材料在切应力作用下沿滑移面分离而造成的断裂称为剪切断裂。又分为滑断(纯剪切断裂)和微孔聚集型断裂。某些纯金属,尤其是单晶体金属可产生纯剪切断裂,其断口呈锋利的楔形。如低碳钢拉伸断口上的剪切唇。大块单晶体的纯剪切断口上,用肉眼便可观

14、察到很多直线状的滑移痕迹。微孔聚集型断裂是通过微孔聚合而导致材料分离。由于实际材料中常同时形成许多微孔,故微孔聚集型断裂是材料韧性断裂的普通方式。其断口在宏观上常呈现暗灰色、纤维状,微观特征是断口上分布大量“韧窝”。,24,5.1.3 材料的断裂及其性能指标,(2)解理断裂 在正应力作用下,材料原子间的结合键被破坏,从而引起沿特定晶面发生的穿晶断裂称为解理断裂。解理断口由许多大致相当于晶粒大小的解理面集合而成。这种以晶粒大小为单位的解理面称为解理刻面。解理裂纹往往沿着一族相互平行,但位于“不同高度”的晶面扩展。不同高度的解理面之间存在台阶,众多台阶的汇合便形成河流状花样。解理台阶、河流花样和舌

15、状花样是解理断口的基本微观特征,,25,5.1.3 材料的断裂及其性能指标,(3)准解理断裂 准解理断裂是解理断裂的变种,断口微观形态相似于解理河流状花样,但准解理裂纹不是严格地沿着一定晶面扩展,其刻面不是晶体学解理面,不属于真正的解理,故称为准解理。解理裂纹一般源于晶界,而准解理裂纹则常源于晶内硬质点,形成从晶内某点发源的放射状河流花样。准解理断裂常见于淬火、回火处理的钢中。 (4)高分子材料的断裂 高分子材料的断裂也分为脆性断裂和韧性断裂两大类。玻璃态聚合物在玻璃化温度 以下主要为脆性断裂,聚合物单晶体可以发生解理断裂,属于脆性断裂。而温度以上的玻璃态聚合物以及通常使用的半晶态聚合物,断裂

16、时伴随有较大的塑性变形,属于韧性断裂。,26,27,Figure When a ductile material is pulled in a tensile test, necking begins and voids form starting near the center of the bar by nucleation at grain boundaries or inclusions. As deformation continues a 45 shear lip may form, producing a final cup and cone fracture,28,Figure

17、 Dimples form during ductile fracture. Equiaxed dimples form in the center, where microvoids grow. Elongated dimples, pointing toward the origin of failure, form on the shear lip,29,Figure Scanning electron micrographs of an annealed 1018 steel exhibiting ductile fracture in a tensile test. (a) Equi

18、axed dimples at the flat center of the cup and cone, and (b) elongated dimples at the shear lip (x 1250),30,Figure Scanning electron micrograph of a brittle fracture surface of a quenched 1010 steel (x 5000).,31,Figure The Chevron pattern in a 0.5-in.-diameter quenched 4340 steel. The steel failed i

19、n a brittle manner by an impact blow,32,Figure The Chevron pattern forms as the crack propagates from the origin at different levels. The pattern points back to the origin,33,5.1.4 材料的弯曲及其性能指标,Bend test - Application of a force to the center of a bar that is supported on each end to determine the re

20、sistance of the material to a static or slowly applied load. Flexural strength or modulus of rupture -The stress required to fracture a specimen in a bend test. Flexural modulus - The modulus of elasticity calculated from the results of a bend test, giving the slope of the stress-deflection curve.,3

21、4,5.1.4 材料的弯曲及其性能指标,1.弯曲试验测定的力学性能指标 弯曲试验在万能试验机上进行,其试样分圆柱和方形两种。加载方式有三点弯曲加载和四点弯曲加载两种。通过记录载荷F(或弯矩 )与试样最大挠度f之间的关系曲线-弯曲图,来确定材料在弯曲载荷下的力学性能。 对于脆性材料,可根据弯曲图计算抗弯强度式中:Mb 为试样断裂时的弯矩 。 W为试样抗弯截面系数, 对于直径为d0 的圆柱试样, , 对于宽度为b ,高度为h 的矩形试样, 。 塑性用最大弯曲挠度fmax 表示,fmax 值可由百分表或挠度计直接读出。此外,从弯曲挠度曲线上还可测算弯曲弹性模量Eb 。,35,5.1.4 材料的弯曲及

22、其性能指标,2. 弯曲试验的特点及应用 不存在拉伸试验时试样装卡偏斜对实验结果造成的影响。对于难以加工成拉伸试样的硬脆材料,可用弯曲试验测定断裂强度,并能显示出它们的塑性差别。 试样截面上的应力分布是表面上应力最大,故可灵敏地反映材料的表面缺陷(如检验渗碳层的质量和性能)。 不能使塑性材料断裂,虽可测定规定非比例应力和弯曲应力,但实际上很少应用。 主要用于测定灰铸铁、硬质合金、陶瓷等材料的抗弯强度。,36,Figure The stress-strain behavior of brittle materials compared with that of more ductile mater

23、ials,37,Figure (a) The bend test often used for measuring the strength of brittle materials, and (b) the deflection obtained by bending,38,Figure Stress-deflection curve for Mg0 obtained from a bend test,39,Figure (a) Three point and (b) four-point bend test setup,40,41,5.1.5 材料的硬度Hardness of Materi

24、als,Hardness test - Measures the resistance of a material to penetration by a sharp object. Macrohardness - Overall bulk hardness of materials measured using loads 2 N. Microhardness Hardness of materials typically measured using loads less than 2 N using such test as Knoop (HK). Nano-hardness - Har

25、dness of materials measured at 110 nm length scale using extremely small (100 N) forces.,42,5.1.5 材料的硬度Hardness of Materials,硬度是衡量材料软硬程度的一种力学性能,其物理意义是材料表面上不大体积内抵抗变形或破裂的能力。 硬度试验方法有十几种,按加载方式不同,可分为压人法和刻划法两大类。布氏硬度、洛氏硬度、维氏硬度和显微硬度属于压人法。刻划法包括莫氏硬度和挫刀法等。,43,5.1.5 材料的硬度Hardness of Materials,1.布氏硬度 布氏硬度是1900年由

26、瑞典工程师J.B.Brinell提出。测量方法是,在负荷F的作用下,将直径为D的淬火钢球压人试样表面,保持一定时问后卸除载荷,以试样压痕的表面积A去除负荷F所得的商,作为硬度的计算指标,用符号HB表示。压痕直径越大,布氏硬度值HB越小; 布氏硬度值为450650的材料,用硬质合金压头,用“ HBW”表示;对于布氏硬度值低于450的材料,使用淬火钢球压头,用“HBS ”表示。 布氏硬度值的表示方法,一般记为“数字+硬度符号(HBS或HBW)+数字/数字/数字”的形式,符号前面的数字为硬度值,符号后面的数字依次表示钢球直径、载荷大小及载荷保持时间等试验条件。 布氏硬度试验的优点是压痕面积大,试验数

27、据稳定,重复性高。其硬度值能反映材料在较大区域内各组成相的平均性能,最适合测定灰铸铁、轴承合金等材料的硬度。 操作较为麻烦,对不同的材料需要更换压头直径 和载荷F,压痕直径需要测量。因压痕直径较大,一般不宜在成品件上直接进行检验。,44,5.1.5 材料的硬度Hardness of Materials,1. 洛氏硬度 洛氏硬度是1919年由美国人S.P.Rockwell和H.M.Rockwell提出,以压痕深度作为计量硬度的依据。 洛氏硬度试验时,采用的压头为120的金钢石圆锥或直径为1.588mm、3.175 的钢球。载荷先后分两次施加。 金属越硬压痕深度越小,金属越软压痕深度越深。用常数k

28、减去压痕深度h,所得差值作为洛氏硬度的指标HR。 硬度值可由表盘上直接读出。显然,材料越软则压痕 越深; 洛氏硬度试验的优点是操作简便;压痕面积较小,可检测成品、小件和薄件;测量范围大,从很软的有色金属到极硬的硬质合金;测量迅速,可直接从表盘上读出硬度值。其缺点是压痕较小,代表性差;所测硬度值的重复性差、分散度大;不适于检测灰铸铁、滑动轴承合金及偏析严重的材料。用不同标尺测得的硬度值既不能直接进行比较,又不能彼此互换。,45,5.1.5 材料的硬度Hardness of Materials,表52 洛氏硬度试验条件及应用,46,Figure Indentors for the Brinell

29、and Rockwell hardness tests,47,48,Section 5.2 材料承受冲击载荷时的力学性能,Impact test - Measures the ability of a material to absorb the sudden application of a load without breaking. Impact energy - The energy required to fracture a standard specimen when the load is applied suddenly. Impact toughness - Energy

30、absorbed by a material, usually notched, during fracture, under the conditions of impact test. Fracture toughness - The resistance of a material to failure in the presence of a flaw.,49,5.2.1 冲击弯曲试验,缺口试样一次冲击弯曲试验在摆锤式冲击试验机上进行,将试样水平放置于试验机支座上,缺口位于冲击相背方向。冲击时将质量为G 的摆锤举至高度h0的位置,使其获得位能Gh0。释放摆锤冲断试样后,摆锤的剩余能量为

31、Ghf ,则摆锤冲断试样失去的位能为Gh0-Ghf 。此即为试样变形和断裂所吸收的功,称为冲击功,以Wk (Ak)表示,单位为J。 国家标准规定,冲击弯曲试验用试样分为夏比U型缺口试样和夏比V型缺口试样,所测得的冲击功分别记为Whu和Whv。测量陶瓷、铸铁或工具钢等脆性材料的冲击功时,常采用101055(mm) 的无缺口冲击试样。,50,5.2.2 多次冲击试验,多次冲击试验后可绘制出冲击功W一冲断次数N曲线 随冲击功W的减少,冲断次数N增加。,图515 多次冲击曲线,51,5.2.3 冲击韧性及其意义,冲击韧性KK值越大,表示材料的冲击韧性越好。同一条件下,其U型缺口试样的K值显著大于V型缺

32、口试样,所以它们的K值不能互相比较。 材料的K值随温度的降低而减小。在某一温度范围内, K值急剧降低,这种现象称为冷脆。这个温度范围称为冷脆转变温度范围。 K对材料的缺陷,如淬火过热造成的晶粒粗大、回火脆性、时效不充分、夹杂物形态、纤维方向等非常敏感,常用于检验冶炼、热加工、热处理工艺的质量。也常用于检验材料的冷脆性、以确定材料的冷脆转变温度。,52,Figure The impact test: (a) The Charpy and Izod tests, and (b) dimensions of typical specimens,53,Ductile to brittle transi

33、tion temperature (DBTT) - The temperature below which a material behaves in a brittle manner in an impact test. Notch sensitivity - Measures the effect of a notch, scratch, or other imperfection on a materials properties, such as toughness or fatigue life.,54,Figure Results from a series of Izod imp

34、act tests for a super-tough nylon thermoplastic polymer,55,Figure The Charpy V-notch properties for a BCC carbon steel and a FCC stainless steel. The FCC crystal structure typically leads top higher absorbed energies and no transition temperature,56,Figure The area contained within the true stress-t

35、rue strain curve is related to the tensile toughness. Although material B has a lower yield strength, it absorbs a greater energy than material A. The energies from these curves may not be the same as those obtained from impact test data,57,Section 5.3 材料的疲劳,Fatigue is the lowering of strength or fa

36、ilure of a material due to repetitive stress which may be above or below the yield strength. Creep - A time dependent, permanent deformation at high temperatures, occurring at constant load or constant stress. Beach or clamshell marks - Patterns often seen on a component subjected to fatigue. Rotati

37、ng cantilever beam test - An older test for fatigue testing. S-N curve (also known as the Whler curve) - A graph showing stress as a function of number of cycles in fatigue.,58,Section 5.3 材料的疲劳,许多机件承受的是大小及方向不断变化的交变载荷,例如轴、齿轮、弹簧等。在交变载荷作用下,材料经常在远低于其屈服强度的载荷下发生断裂,这种现象称为“疲劳”。 疲劳断裂时,材料没有明显的塑性变形,断裂是突然发生的,常

38、常造成严重的事故。 按应力状态,分为弯曲疲劳、扭转疲劳、拉压疲劳、接触疲劳和复合疲劳; 按应力高低和断裂寿命,分为高周疲劳和低周疲劳。,59,5.3.1 疲劳曲线,以max为纵坐标,以疲劳断裂周次N为横坐标绘制的曲线,称为疲劳曲线。简写为-N曲线。实验表明,金属材料所受的最大交变应力max越大,则断裂前所能承受的应力循环次数N越少。当应力循环中的最大应力max降低到某一数值,材料可以经受无限次应力循环而不发生疲劳断裂,-N曲线上出现了趋于水平部分。 不同材料的疲劳曲线形状不同,大致可分为两类。一类有水平线,如一般结构钢和球墨铸铁的疲劳曲线,据此,可标定出无限寿命的疲劳强度;另一类无水平线,如有

39、色合金、不锈钢和高强钢的疲劳曲线 。,60,Figure The stress-number of cycles to failure (S-N) curves for a tool steel and an aluminum alloy,61,5.3.2 疲劳极限,当应力低于某一值时,材料经无限循环周次也不发生断裂,此值称为疲劳极限或疲劳强度。 光滑试样的对称疲劳极限用-1 表示,单位MPa。对于无水平线的疲劳曲线,只能根据材料的使用要求,确定有限寿命下的疲劳极限。例如,钢材的循环基数为107 ,有色金属和某些超高强度钢的循环基数为108 。超过这个基数就认为该材料不再发生疲劳破坏。 常见的

40、对称循环载荷有对称弯曲(-1,最常用)、对称扭转(-1)、对称拉压(-1p) 等,一般情况下-1 -1p -1 . 对于中、低强度钢, -1 =0.5b 。但抗拉强度较高时,这种线性关系要改变,因为强度较高时,材料的塑性和断裂韧性降低,裂纹易于形成和扩展。,62,5.3.3 疲劳断口,疲劳断口:裂纹产生区、裂纹扩展区和最后断裂区。 疲劳裂纹萌生的地方,多出现在机件表面,常和缺口、裂纹、刀痕、蚀坑等缺陷相连。若材料内部存在严重冶金缺陷(夹杂、缩孔、偏析、白点等),也会因局部材料强度降低而在机件内部引发出疲劳源。 疲劳裂纹产生后,在交变应力作用下,继续扩展长大,这个区域称为疲劳裂纹扩展区。其宏观特

41、征是:断口较光滑并分布有贝纹线(或海滩花样),有时还有裂纹扩展台阶。贝纹线是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向。近疲劳源区贝纹线较细密,表明裂纹扩展较慢;远离疲劳源区贝纹线较稀疏、粗糙,表明此段裂纹扩展较快。,63,5.3.3疲劳断口,最后断裂区,随着疲劳裂纹的扩展,零件的有效截面不断减小,剩余断面上的应力不断增加。当应力超过材料的断裂强度时,发生断裂,形成最后断裂区。该区的断口比疲劳区粗糙,宏观特征如同静载,随材料性质而变。脆性材料断口呈结晶状;韧性材料断口为纤维状,暗灰色,在心部平面应变区呈放射状或人字纹状,边缘平面应力区则有剪切唇区存在。 疲劳裂纹扩展区与

42、最后断裂区所占面积的相对比例,随应力大小和材料的断裂韧性而变化。所受应力小而无大的应力集中时,则疲劳裂纹扩展区大;反之,则小。因此,可以根据疲劳断口上两个区所占的比例,估计所受应力高低及应力集中程度的大小。,64,Figure Fatigue fracture surface. (a) At low magnifications, the beach mark pattern indicates fatigue as the fracture mechanism. The arrows show the direction of growth of the crack front, whose

43、 origin is at the bottom of the photograph. (Image (a) is from C.C. Cottell, Fatigue Failures with Special Reference to Fracture Characteristics, Failure Analysis: The British Engine Technical Reports, American Society for Metals, 1981, p. 318.) (b) At very high magnifications, closely spaced striat

44、ions formed during fatigue are observed (x 1000),65,Figure Schematic representation of a fatigue fracture surface in a steel shaft, showing the initiation region, the propagation of fatigue crack (with beam markings), and catastrophic rupture when the crack length exceeds a critical value at the app

45、lied stress,66,Results of the Fatigue Test,Endurance limit - An older concept that defined a stress below which a material will not fail in a fatigue test. Fatigue life - The number of cycles permitted at a particular stress before a material fails by fatigue. Fatigue strength - The stress required

46、to cause failure by fatigue in a given number of cycles, such as 500 million cycles. Notch sensitivity - Measures the effect of a notch, scratch, or other imperfection on a materials properties, such as toughness or fatigue life. Shot peening - A process in which metal spheres are shot at a componen

47、t.,67,Application of Fatigue Testing,Figure Examples of stress cycles. (a) Equal stress in tension and compression, (b) greater tensile stress than compressive stress, and (c) all of the stress is tensile,68,Figure Crack growth rate versus stress-intensity factor range for a high-strength steel. For

48、 this steel, C = 1.62 1012 and n = 3.2 for the units shown,69,Section 5.4 材料的断裂韧性,有些机件会在很低应力的状态下,发生脆性断裂。 实际材料中不可避免地存在着各种缺陷。例如,夹杂物、气孔等冶金缺陷和在使用、加工过程中产生的机械缺陷。这些缺陷破坏了材料的连续性,成为材料中的裂纹。 低应力脆性断裂是由材料中裂纹的扩展引起的。 断裂力学运用连续介质力学的弹塑性理论,考虑了材料的不连续性,研究材料中裂纹扩展的规律,确定材料抵抗断裂的力学性能指标断裂韧性。断裂韧性反映了材料抵抗裂纹失稳扩张的能力。,70,5.4.1 断裂韧性的

49、概念,张开型裂纹(通常称之为I型裂纹),其大小可以用应力强度因子 来描述。 对一个存在裂纹的试样施加拉伸载荷时,其Y值是一定的。随应力 逐渐增大,或者裂纹长度2a逐渐扩展,裂纹尖端的K1增大到某一数值时,可使裂纹前沿某一区域的内应力大到足以使裂纹产生失稳扩展,即发生脆断。这个强度因子的临界值,称为材料的断裂韧性,用K1c 表示。它反映了有裂纹存在时,材料抵抗脆性断裂的能力。当 K1 K1c时裂纹失稳扩展,发生脆断;当 K1 K1c时,裂纹不扩展或扩展很慢,不发生快速脆断;当 K1= K1c时,裂纹处于临界状态。,71,5.4.1 断裂韧性的概念,K1是描述裂纹尖端应力场大小的力学参量,它与裂纹类型、物体的形状、大小以及外加应力等参数有关,与材料无关;而断裂韧性K1c 是评定材料阻止裂纹失稳扩展能力的力学性能指标,它与裂纹本身的大小、形状无关,也和外加应力无关,是材料本身的特性,只和材料的成分、热处理及加工工艺等有关。 断裂韧性为安全设计提供了一个重要的力学性能指标,尤其在疲劳、冲击、高低温强度、应力腐蚀、辐照损伤等强度领域得到了广泛的应用。同时也为发展新材料、新工艺及合理选材指出了方向。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报