收藏 分享(赏)

化学动力学基本原理ch09.ppt

上传人:hwpkd79526 文档编号:7995730 上传时间:2019-06-03 格式:PPT 页数:102 大小:1.59MB
下载 相关 举报
化学动力学基本原理ch09.ppt_第1页
第1页 / 共102页
化学动力学基本原理ch09.ppt_第2页
第2页 / 共102页
化学动力学基本原理ch09.ppt_第3页
第3页 / 共102页
化学动力学基本原理ch09.ppt_第4页
第4页 / 共102页
化学动力学基本原理ch09.ppt_第5页
第5页 / 共102页
点击查看更多>>
资源描述

1、第九章 化学动力学基本原理,化学动力学基本原理,第九章 化学动力学基本原理,9.1 引言,9.1 引言,一、化学动力学的目的和任务,化学热力学的研究对象:研究化学变化的方向和限度问题以及外界条件对平衡的影响。化学热力学只能预测反应的可能性,但无法预料反应能否发生?反应的速率如何?反应的机理如何?,化学热力学解决反应的可能性问题,能否实现反应还需由化学动力学来解决。,9.1 引言,化学动力学的目的和任务,化学动力学是研究化学反应速率的科学。,化学动力学的基本任务:研究各种因素(如反应系统中各物质的浓度、温度、催化剂、光、介质)对反应速率的影响,揭示化学反应如何进行的机理;研究物质的结构与反应性能

2、的关系。,化学动力学的目的:为了能控制反应的进行,使反应按人们所希望的速率进行,并得到人们所希望得到的产品。,9.1 引言,二、反应速率的表示法,反应速率:化学反应进行的快慢程度。目前,国际上普遍采用以反应进度随时间的变化率来定义反应速率J,按照反应进度的定义,该定义的反应速率与物质的选择无关,而且无论反应进行的条件如何,总是严格的、正确的。,9.1 引言,反应速率的表示法,对于体积一定的密闭体系,常用单位体积的反应速率r表示 。,对于任意化学反应,i=Ci=ni/V 参加反应的物质的浓度,在参加反应的物质中,选用任何一种,反应速率的值都是相同的。,9.1 引言,三、反应速率的实验测定,反应速

3、率的实验测定实际上就是测定不同时刻反应物或产物的浓度。,在浓度随时间变化的图上,在时间t 时,作交点的切线,就得到 t 时刻的瞬时速率。显然,反应刚开始,速率大,然后不断减小,体现了反应速率变化的实际情况。,9.1 引言,反应速率的实验测定,测定不同时刻各物质浓度的方法有两种:,化学法。用化学分析法来测定不同时刻反应物或产物的浓度,一般用于液相反应。,物理法。这种方法的基点在于测量与某种物质浓度呈单值关系的一些物理性质随时间的变化,然后换算成不同时刻的浓度值。,9.1 引言,化学法,化学法的要点:当取出样品后,必须立即冻结反应,即要使反应不再继续进行,并尽可能快地测定浓度。,冻结的方法:骤冷、

4、冲稀、加阻化剂、移走催化剂等。,优点:设备简单,可直接测得浓度,缺点:在没有合适的冻结反应的方法时,很难测得指定时刻的浓度,因而往往误差很大。,9.1 引言,物理法,可利用的物理性质有:压力、体积、旋光度、折光率、电导、电容率、颜色、光谱等。,优点:迅速而且方便,特别是可以不中止反应、不需取样,可进行连续测定,便于自动记录。,缺点:由于测量浓度时通过间接关系,如果翻译系统由副反应或少量杂质对所测量的物理性质有较灵敏的影响时,易造成较大的误差。,9.1 引言,四、反应机理的概念,许多化学反应并不是按照计量方程式一步完成的,而是要经历一系列具体步骤才能实现。,例如:H2 + Cl2 2HCl总反应

5、要经历四个反应才能实现。,9.1 引言,基本概念,总反应:计量方程式仅表示反应的总效果,称为总反应。,基元反应:由反应物分子(或离子、原子、自由基等)直接作用而生成新产物的反应。基元反应不仅是反应物分子直接作用,而且必须是生成新产物的过程。,反应机理:反应机理又称为反应历程。组成宏观总反应的基元反应的总合。在有些情况下,反应机理还要给出所经历的每一步的立体化学结构图。,复合反应:由两种或两种以上的基元反应组成的总反应。,简单反应:仅由一种基元反应组成的总反应。,9.1 引言,反应分子数,反应分子数:对于基元反应,直接作用所必需的反应物微观粒子(分子、原子、离子、自由基)数。,依据反应分子数的不

6、同,基元反应可区分为单分子反应、双分子反应和三分子反应。,反应分子数是针对基元反应而言的,表示反应微观过程的特征。简单反应和复合反应是针对宏观总反应而言的。,9.1 引言,9. 反应速率公式,9.2 反应速率公式,一、反应速率的经验表达式,反应速率方程又称动力学方程,它表明了反应速率与浓度等参数之间的函数关系或浓度等参数与时间的函数关系。速率方程可表示为微分式或积分式。,微分形式 r = f (ci) 积分形式 ci=f ( t ),由实验确定的速率公式都是经验公式。经验公式有很重要的作用,可以为化学工程设计合理的反应器提供依据。 可以为研究反应机理提供线索。,9.2 反应速率公式,二、反应级

7、数,速率方程中各反应物浓度项上的指数称为该反应物的级数。如果反应速率有以下形式,、 分别称为参加反应的各组分A、B的级数 n= + 各指数之和称为总反应的级数,凡是与速率公式的微分形式不符合的反应,反应级数的概念是不适用的。,9.2 反应速率公式,反应级数,9.2 反应速率公式,反应级数,反应级数可以是整数、分数、正数、零或负数。,、等与反应的计量数不一定相同,不宜混为一谈。,一个反应的反应级数,无论是、 或是n ,都是由实验确定的。,9.2 反应速率公式,三、质量作用定律,对于基元反应,反应速率与反应物浓度的幂乘积成正比。幂指数就是基元反应方程中各反应物的系数。这就是质量作用定律,它只适用于

8、基元反应。,例如: 基元反应 反应速率r,9.2 反应速率公式,质量作用定律,由质量作用定律可知,简单反应的反应级数与其相应的基元反应的反应分子数是相同的。,注意: 反应级数与反应分子数毕竟是两个不同的概念。 反应级数是对总反应而言的。 反应分子数是对基元反应而言的。 对于复合反应,说其反应分子数是没有意义的。,9.2 反应速率公式,四、速率常数,速率方程中的比例系数 k ,称为反应的速率常数。有的书上也称为速率系数。,物理意义:当反应物的浓度均为单位浓度时 k 等于反应速率。,对于指定反应,k值与浓度无关,与反应的温度及所用的催化剂有关。,k值的大小可直接体现反应进行的难易程度,因而是重要的

9、动力学参数。,9.2 反应速率公式,速率常数,K在数值上等于各有关物质的浓度均为一个单位时的瞬时速率,所以有时也称为比率常数。,K是有单位的量,其单位与反应级数有关。,从K的单位可以看出反应的级数是多少。,9.2 反应速率公式, 9.3 简单级数反应的速率常数,9.3 简单级数反应的速率公式,一、一级反应,简单级数反应:凡是反应速率只与反应物浓度有关,而且反应级数,无论是、 或n都只是零或正整数的反应。,简单反应都是简单级数反应,简单级数反应不一定就是简单反应。,9.3 简单级数反应的速率公式,常见的一级反应有放射性元素的蜕变、分子重排、五氧化二氮的分解等。,一级反应:反应速率与反应物浓度的一

10、次方成正比的反应。,一级反应,一级反应的速率公式可表示为,这个公式可表示为,积分可得,lnc = -k1t + B,c 时刻的反应物浓度 B 积分常数,9.3 简单级数反应的速率公式,当t=0时,c=c0 所以 B=lnc0 lnc=k1t+lnc0,C0 时刻的反应物浓度,一级反应,一级反应速率公式的积分形式为,或,或,9.3 简单级数反应的速率公式,一级反应的特点,以c对t作图,应得一直线,其斜率即为-k1,半衰期:反应物浓度由c0消耗c=1/2c0时所需的时间,用t1/2来表示。,t1/2=1/k12=0.6932/k1,可以看出:一级反应的半衰期与反应物起始浓度无关。,k1的量纲时间

11、-1,单位为s -1 ,min-1,h-1,9.3 简单级数反应的速率公式,二、二级反应,二级反应:反应速率与反应物浓度的二次方(或两种反应物浓度的乘积)成正比的反应。,常见的二级反应有乙烯、丙烯的二聚作用,乙酸乙酯的皂化,碘化氢的热分解反应等。,9.3 简单级数反应的速率公式,二级反应,9.3 简单级数反应的速率公式,二级反应,当a=b时,不定积分,定积分,当t=0时,x=0,9.3 简单级数反应的速率公式,二级反应,当ab时,定积分,2A C,定积分,9.3 简单级数反应的速率公式,二级反应的特点,以1/(a-x)对t作图,应得一直线,斜率为k2,k2的量纲浓度 -1时间 -1,与所用的时

12、间单位和浓度单位有关。,对a=b的反应 t1/2=1/k2a 二级反应的半衰期与反应物的起始浓度成反比对ab的反应 无t1/2,9.3 简单级数反应的速率公式,三、三级反应,三级反应:反应速率与反应物浓度的三次方(或三种反应物浓度的乘积)成正比的反应。,三级反应数量较少,到目前为止,发现的气相三级反应只有五个,都与NO有关。,9.3 简单级数反应的速率公式,三级反应,9.3 简单级数反应的速率公式,A + B + C P t=0 a b c 0 t=t (a-x) (b-x) (c-x) x,三级反应,不定积分式,定积分式,9.3 简单级数反应的速率公式,三级反应的特点,以 作图为直线,斜率为

13、2k3,k3的量纲浓度-2 时间-1,对a=b=c的反应,9.3 简单级数反应的速率公式,四、零级反应,零级反应:反应速率方程中,反应物浓度项不出现,即反应速率与反应物浓度无关的反应。,常见的零级反应有表面催化反应和酶催化反应,这时反应物总是过量的,反应速率决定于固体催化剂的有效表面活性位或酶的浓度。,A P r = k0,9.3 简单级数反应的速率公式,零级反应,积分,9.3 简单级数反应的速率公式,零级反应的特点,xt作图得一直线,斜率为k0,K0的量纲浓度,时间 -1,半衰期,9.3 简单级数反应的速率公式, 9.4 反应级数的测定,9.4 反应级数的测定,一、积分法,积分法:就是利用速

14、率公式的积分形式来确定反应级数的方法。,尝试法:将不同时间测出的反应物浓度的数据代人各反应级数的积分公式,求算其速率常数的数值,如果按某个公式计算的为一常数,则该公式的级数即为反应的级数。,作图法:对一级反应,以lnc对t作图应得直线对二级反应,以1/c对t作图应得直线对三级反应,以1/c2对t作图应得直线对零级反应,以c对t作图应得直线,优点:只要一次实验的数据就能进行尝试或作图。 缺点:不够灵敏,只能运用于简单级数反应。,9.4 反应级数的测定,积分法,半衰期法:不同级数的反应,其半衰期与反应物起始浓度的关系不同。但半衰期与起始浓度的关系为:,采用不同的起始浓度,并找出对应的之值,则以ln

15、t1/2对lna作图应为直线,斜率为1-n,从而求得其级数n。,9.4 反应级数的测定,t1/2 = ka 1-n,积分法,半衰期法:取两个不同的起始浓度a和a做实验,分别测定半衰期t1/2和 t1/2。因同一反应A相同,所以,优点:不限于半衰期t1/2,也可以用反应物反应了1/3、2/3、3/4、的时间代替半衰期,而且也只需要一次实验的曲线就可求得反应级数。 缺点:反应物不止一种而起始浓度又不相同时,就变得比较复杂了。,9.4 反应级数的测定,二、微分法,微分法:就是用速率公式的微分形式来确定反应级数的方法。,nA P t =0 cA,0 0 t =t cA x,9.4 反应级数的测定,微分

16、法,在c t曲线上,任取两点,则这两点的瞬时速率应为,r1=kc1n r2=kc2n,由此可以看出:以lnr对lnc作图,应为一直线,其斜率就是反应级数n,截距即为lnk,9.4 反应级数的测定,微分法的处理方法一,在c t图上,求出不同时刻,即相应于不同浓度时切线的斜率,即为反应在该时刻的瞬时速率,因为用这样的斜率确定反应级数时,反应时间是不同的,这样确定的级数可称为对时间而言的级数,用符号nt表示,将瞬时速率的对数lnr对lnc作图,所得直线的斜率即为反应级数,9.4 反应级数的测定,微分法的处理方法二,在不同的起始浓度时测量不同的起始速度,即各曲线在时切线的斜率,用这种方法确定的反应级数

17、可称为对浓度而言的级数,或称为真实级数,用符号nc表示,将这些起始速率的对数lnr对相应的起始浓度的对数lnc作图,所得直线的斜率即为反应级数,9.4 反应级数的测定,三、孤立法(过量浓度法),孤立法类似于准级数法,它不能用来确定反应级数,而只能使问题简化,然后用前面三种方法来确定反应级数。若有两种或两种以上的物质参与反应,而各反应的起始浓度又不相同,其速率公式为,使AB,先确定值,使BA ,再确定值,则反应级数应为 n=+,9.4 反应级数的测定, 9.5 温度对反应速率的影响,9.5 温度对反应速率的影响,一、阿累尼乌斯经验公式,例如:某反应在390 K时进行需10 min。若降温到290

18、 K,达到相同的程度,需时多少?,范霍夫(vant Hoff)近似规律:温度每升高10 K,反应速率近似增加24倍。这个经验规律可以用来估计温度对反应速率的影响。,9.5 温度对反应速率的影响,阿累尼乌斯经验公式,k 值随T 的变化率决定于 Ea 值的大小。,描述了速率系数与 1/T 之间的线性关系。可以根据不同温度下测定的 k 值,以lnk 对 1/T 作图,应得一直线,其斜率为-Ea/R,9.5 温度对反应速率的影响,温度对反应速率的影响,通常都是讨论速率常数k随温度的变化。一般说来反应的速率常数随温度的升高而很快增大。,阿累尼乌斯经验公式,描述了速率随温度而变化的指数关系人们往往将该式称

19、为反应速率的指数定律。阿仑尼乌斯认为A和Ea 都是与温度无关的常数。,定积分式,设活化能与温度无关,根据两个不同温度下的 k 值求活化能。,9.5 温度对反应速率的影响,温度对反应速率影响的类型,温度对反应速率的影响通常有五种类型,9.5 温度对反应速率的影响,温度对反应速率影响的类型,9.5 温度对反应速率的影响,二、活化能的概念及其实验测定,活化分子:阿累尼乌斯设想不是反应物分子之间的任何一次直接作用都能发生反应,只有那些能量相当多的分子之间的直接作用才能发生反应。在直接作用中能发生反应的、能量高的分子称为活化分子。,活化能:活化分子的能量比普通分子的能量的超出值称为反应的活化能。,活化能

20、概念的提出,具有很大的理论价值,在解释动力学现象时应用的非常广泛。,9.5 温度对反应速率的影响,活化分子和活化能的概念,Tolman 用统计平均的概念对基元反应的活化能下了一个定义:活化能是活化分子的平均能量与所有分子平均能量之差值。,阿累尼乌斯认为:两个反应物分子直接作用,在变成产物之前需要经过一个活化状态。,9.5 温度对反应速率的影响,活化分子和活化能的概念,Ea 正向反应的活化能:活化态的能量与反应物能量之差 Ea 逆向反应的活化能:活化态的能量与产物能量之差,9.5 温度对反应速率的影响,活化能的实验测定,作图法,根据不同温度下测定的 k 值,以lnk 对 1/T 作图,应得一直线

21、,其斜率为-Ea/R,因此,Ea=(-斜率) R,数值计算法,测定任意两个不同温度下的 k 值,然后代人计算求活化能。,9.5 温度对反应速率的影响,三、阿累尼乌斯公式的一些应用,解释实验现象,不同的反应有不同的反应速率。不同的反应所需活化能的数值不同,因此对不同的反应来说,Ea越大,k越小。,同一反应温度不同,反应速率不同。同一反应,温度越高,k越大。,不同反应,Ea越大,k随T的变化率越大,同一反应,T越大,k随T的变化率越小。,9.5 温度对反应速率的影响,阿累尼乌斯公式的一些应用,由已知的某温度下的速率常数,求算另一温度下的速率常数,确定较适宜的反应温度。原则上说,只需将阿累尼乌斯公式

22、代人反应的速率公式,即可确定较适宜的反应温度的问题。,9.5 温度对反应速率的影响,阿累尼乌斯公式的补充说明,对简单反应或复杂反应中的每一基元反应总是适用的。,对于速率公式不具有r=kAB形式的复杂反应,公式不适用。,对于速率公式具有简单形式r=kAB的复杂反应也适用,此时Ea为“表现活化能”。,k(表观)=k1k2/k-1 Ea(表观)=Ea,1+Ea,2-Ea, -1,将反应的活化能看作是一个与温度无关的常数,而实际上它是略与温度有关的。,9.5 温度对反应速率的影响, 9.6 双分子反应的简单碰撞理论,9.6 双分子反应的简单碰撞理论,一、碰撞理论简介,碰撞理论是在接受了阿累尼乌斯关于“

23、活化分子”和“活化能”概念的基础上,利用气体分子运动论,在1918年由路易斯建立起来的。该理论有两点基本看法:,两个反应物分子要发生反应的先决条件是必须发生碰撞。 不是任何两个反应物分子之间碰撞都能发生反应,只有当两个反应物分子的能量超过一定数值时,碰撞后才能发生反应。,9.6 双分子反应的简单碰撞理论,根据以上两点基本看法,活化分子在单位时间内的碰撞数就是反应速率,Z 反应系统中单位体积单位时间内分子之间的碰撞数 q 有效碰撞在总碰撞数中所占的分数,二、碰撞数Z的求算,假设分子为刚性球体,根据气体分子运动论,A,B两种不同分子间的碰撞,在单位体积、单位时间中的碰撞数为:,9.6 双分子反应的

24、简单碰撞理论,碰撞数Z的求算,如果是同种分子间的碰撞,在单位体积、单位时间中的碰撞数为,9.6 双分子反应的简单碰撞理论,三、有效碰撞数q的求算,有效碰撞:分子互碰并不是每次都发生反应,只有相对平动能在连心线上的分量大于阈能的碰撞才是有效的,所以绝大部分的碰撞是无效的。要在碰撞频率项上乘以有效碰撞分数q,反应阈能又称为反应临界能。两个分子相撞,相对动能在连心线上的分量必须大于一个临界值Ec,这种碰撞才有可能引发化学反应,这临界值Ec称为反应阈能。,弹性碰撞:对大多数移动能在平均值附近或比平均值低的分子来说,由于碰撞得并不剧烈,不足以引起分子中键的松动和断裂,因此不能引起反应,碰撞后随即分开的碰

25、撞。,9.6 双分子反应的简单碰撞理论,Ec 化学反应的阈能,实验活化能与反应阈能的关系,碰撞理论中活化能的概念与阿累尼乌斯公式中活化能的概念是不同的。,碰撞理论明确指出,反应的临界能(活化能)是指反应物分子碰撞时质心连线上相对移动能所需具有的最低值。Ec值与温度无关,实验尚无法测定,而是从实验活化能Ea计算。,阿累尼乌斯公式中的活化能是指反应分子的平均能量与所有分子的平均能量之差值。,9.6 双分子反应的简单碰撞理论,四、速率常数k的计算,将有效碰撞数公式代入反应速率公式整理,比较两式,这就是碰撞理论中速率常数的数学表达式,9.6 双分子反应的简单碰撞理论,速率常数k的计算,而阿累尼乌斯经验

26、公式为,可以看出:只要将Ec和实验活化能Ea看作相等。,Z0 =A,这就是将指前因子称为频率因子的缘故。,9.6 双分子反应的简单碰撞理论,速率常数k的计算,要检验碰撞理论的成功与否,只需从理论上计算出速率常数k,与实验测得的k值比较,看二者是否相符。,k的单位m3molc-1s-1k的单位dm3mol-1s-1,为便于比较,需要将k值乘以换算因子方能与k值比较,对同种分子,对不同种分子,9.6 双分子反应的简单碰撞理论,五、碰撞理论的成功与失败,成功之处,碰撞理论为我们描述了一幅虽然粗糙但十分明确的反应图像,在反应速率理论的发展中起了很大作用。,对阿仑尼乌斯公式中的指数项、指前因子和阈能都提

27、出了较明确的物理意义,认为指数项相当于有效碰撞分数,指前因子A相当于碰撞频率。,它解释了一部分实验事实,理论所计算的速率系数k值与较简单的反应的实验值相符。,9.6 双分子反应的简单碰撞理论,碰撞理论的成功与失败,失败之处,要从碰撞理论来求算速率常数,必须要知道临界能,但碰撞理论本身不能预言阀能,还需通过Ea求出Ec,而Ea的求得需借助实验,这就使该理论失去了从理论上预言k的意义。,在碰撞理论中曾假定反应物分子是个无内部结构的刚性球体,这个假定过于粗糙。模型过于简单,对复杂分子的反应还需考虑碰撞时的空间取向。此时应在速率公式中乘以校正因子,“几率因子”p的值无法求算,而成为一个经验性的校正系数

28、。,9.6 双分子反应的简单碰撞理论, 9.7 过渡态理论大意,9.7 过渡态理论大意,一、过渡态理论简介,过渡态理论又称活化络合物理论或绝对反应速率理论是1935年由艾林(Eyring)和波兰尼(Polany)等人在统计热力学和量子力学的基础上提出来的。,这个理论的基本看法是:当两个具有足够能量的反应物分子相互接近时,分子的价键要经过重排,能量后要经过重新分配,才能变成产物分子。在此过程中要经过一过渡态。处于过渡态的反应体系成为活化络合物。反应物分子通过过渡态的速率就使反应速率。,9.7 过渡态理论大意,二、势能面和过渡态理论中的活化能,过渡态理论在描述反应究竟是如何进行时,采用了一个物理模

29、型,即反应系统的势能面。,当A原子与双原子分子BC反应时首先形成三原子分子的活化 络合物,该络合物的势能是3个内坐标的函数:,9.7 过渡态理论大意,势能面和过渡态理论中的活化能,这要用四维图表示,通常固定ABC=180,即A、B、C三个原子在一条直线上,活化络合物为线型分子,则EP=EP(rAB,rBC),就可用三维图表示。,随着核间距rAB和rBC的变化,势能也随之改变。这些不同点在空间构成高低不平的曲面,称为势能面。将三维势能面投影到平面上,就得到势能面的投影图。势能面的投影图如图所示。,9.7 过渡态理论大意,势能面和过渡态理论中的活化能,靠坐标原点(O点)一方,随着原子核间距变小,势

30、能急剧升高,是一个陡峭的势能峰。,在D点方向,随着rAB和rBC的增大,势能逐渐升高,这平缓上升的能量高原的顶端是三个孤立原子的势能,即D点。,反应物R经过马鞍点T到生成物P,走的是一条能量最低通道。,9.7 过渡态理论大意,势能面和过渡态理论中的活化能,每一点代表了反应系统中一特定的线性构型A-B-C的势能,在等势能线旁标注的数值是指势能的相对值,数值愈大,表示系统的势能愈高;数值愈小,表示系统的势能愈低。,等势线的密集程度代表势能变化的陡度。,S点,代表三个原子A、B、C完全分离的高势能态,R点,处于势能深谷中代表A远离B-C分子的状态,即反应的始态,P点,处于另一侧的势能深谷中,代表C远

31、离A-B分子的状态,即反应的终态,9.7 过渡态理论大意,马鞍点(saddle point),在势能面上,活化络合物所处的位置T点称为马鞍点。,马鞍点的势能与反应物和生成物所处的稳定态能量R点和P点相比是最高点,但与坐标原点一侧和D点的势能相比又是最低点。,如把势能面比作马鞍的话,则马鞍点处在马鞍的中心。从反应物到生成物必须越过一个能垒。,9.7 过渡态理论大意,反应坐标(reaction coordinate),反应坐标:又称为最小能量途径,是一个连续变化的参数,其每一个值都对应于沿反应体系中各原子的相对位置。如在势能面上,反应沿着RTTP的虚线进行,反应进程不同,各原子间相对位置也不同,体

32、系的能量也不同。,如以势能为纵坐标,反应坐标为横坐标,画出的图可以表示反应过程中体系势能的变化,这是一条能量最低的途径。,9.7 过渡态理论大意,反应坐标(reaction coordinate),沿势能面上R-T-P虚线切剖面图,把R-T-P曲线作横坐标,这就是反应坐标。以势能作纵坐标,标出反应进程中每一点的势能,就得到势能面的剖面图。,从剖面图可以看出:从反应物A+BC到生成物走的是能量最低通道,但必须越过势能垒Eb。,这两步并不是截然分开的,即活化络合物或过渡态并不是一个稳定的平衡态,9.7 过渡态理论大意,反应坐标(reaction coordinate),由此可以看出:任何反应均分为

33、两步进行,反应物一起形成活化络合物 活化络合物分解为产物,这两步并不是截然分开的,即活化络合物或过渡态并不是一个稳定的平衡态,9.7 过渡态理论大意,用途,9.7 过渡态理论大意,三、速率常数的统计热力学表达式,过渡态理论是以反应系统的势能面为基础的,在具体求算速率常数时,需作两点近似和假设:,反应系统中的能量分布总是符合玻兹曼分布,反应物与活化络合物能按达成热力学平衡的方式处理 容许系统越过过渡态的运动可从与活化络合物相联系的其他运动中分离出来。活化络合物向产物的转化是反应的决速步。,9.7 过渡态理论大意,速率常数的统计热力学表达式,反应速率应当与活化络合物的浓度和简正振动频率有关,r=A

34、B = K0AB(c0) -1,9.7 过渡态理论大意,速率常数的统计热力学表达式,根据统计热力学的原理,Q00 标准状态下的分子配分函数 U00 标准态下,活化络合物AB和反应物A、B在0K时的零点能之差,也称为0K时的活化能,严格的说, U00与势能面上的势垒Eb从概念上说是不同的,数值上也略有差别,但如将二者看作是数值上相等又不致有大的偏差,在动力学中常用符号E0来代替U00 。,9.7 过渡态理论大意,速率常数的统计热力学表达式,按照过渡态理论的第二点假设,过渡态中沿反应坐标的某一特定的振动自由度可以从活化络合物总的配分函数中分离出来,则,Q0 AB= (Qv)AB QAB,QAB 扣

35、除反应坐标上某一特定振动自由度以后的活化络合物分子的配分函数 (Qv)AB 反应坐标上能导致形成产物的振动自由度的配分函数,h 普朗克常数 k 玻兹曼常数 特定振动自由度的振动频率,9.7 过渡态理论大意,速率常数的统计热力学表达式,这就是过渡态理论中反应速率常数的统计热力学表达式,9.7 过渡态理论大意,四、速率常数的热力学表达式,已知速率常数的统计热力学表达式,K0是一个类似于平衡常数的因子。根据热力学公式,定义,9.7 过渡态理论大意,速率常数的热力学表达式,该式与阿累尼乌斯公式很相似,与其比较,需要找出阿累尼乌斯活化能与活化焓之间的关系。将反应速率常数的统计热力学表达式,9.7 过渡态

36、理论大意,速率常数的热力学表达式,9.7 过渡态理论大意,速率常数的热力学表达式,9.7 过渡态理论大意,这就是过渡态理论中反应速率常数的热力学表达式。该式说明各种不同反应的速率常数的差别是由两个因素决定的,一是活化能,它是决定反应速率的主要因素。二是活化熵。,速率常数的热力学表达式,将反应速率常数的热力学表达式与阿累尼乌斯公式比较,得,9.7 过渡态理论大意,将过渡态理论中反应速率常数的热力学表达式与碰撞理论中,k=PZ0e-Ec/RT,由于RT/Lh与Z0在数量级上相近,因此可近似看作P与exp(S0/R)相当。因此碰撞理论发生偏差的几率因子可用过渡态理论中的活化熵来解释。,速率常数的热力

37、学表达式,原则上说,过度态理论可根据反应物和活化络合物的结构用统计力学来计算活化熵S0 ,从而可大致预示几率因子P的大小。,对结构简单的分子来说,在形成活化络合物时,有序性略有增加,即反应系统的混乱度略有降低, S0 的负值不大,故此时碰撞理论中的P接近于1,对结构复杂的分子来说,在形成活化络合物时,有序性增加较多,即反应系统的混乱度降低较多, S0 的负值较大,故此时碰撞理论中的P远小于1,9.7 过渡态理论大意,五、过渡态理论的评价,形象地描绘了基元反应进展的过程 提供了从理论上求算活化能和活化熵的可能性 对阿仑尼乌斯的指前因子作了理论说明,认为它与反应的活化熵有关 形象地说明了反应为什么

38、需要活化能以及反应遵循的能量最低原理,成功之处,失败之处,引进的平衡假设和速决步假设并不能符合所有的实验事实 活化络合物的结构无法从实验上确定,因此在很大程度上具有猜测性 计算方法过于复杂,9.7 过渡态理论大意, 9.8 单分子反应理论简介,9.8 单分子反应理论简介,一、单分子反应理论简介,单分子反应是只有单一反应物分子参与而实现的反应。真正的单分反应只包括在气相中单一反应物分子的解离与异构化,1922年,林德曼(Lindemann)提出了单分子反应机理。在修正、改进林德曼理论的基础上,又发展了数个单分子反应速率理论,例如:林德曼理论、邢谢伍德理论、斯来特理论、RRK理论、RRKM理论等。

39、其中,林德曼理论是这些单分子反应理论的基石。,9.8 单分子反应理论简介,二、林德曼单分子反应机理,1922年,林德曼(Lindemann)提出了单分子反应机理。在该机理中,林德曼强调:单分子翻译系统仍然是因为分子间的频繁碰撞、交换能量而使一部分反应物分子获得活化能的。该机理的要点:,反应物多原子分子A可通过分子间的碰撞而获得高于反应临界能c的能量 ,变成活化分子A*,9.8 单分子反应理论简介,活化分子A*可通过分子间碰撞而失活,回复到能量较低的稳定状态。,林德曼单分子反应机理,将单分子反应的速率用产物的生成速率表示:,根据上述机理,可以推导出单分子反应的速率公式和速率常数表示式。,9.8 单分子反应理论简介,林德曼单分子反应机理,9.8 单分子反应理论简介,三、林德曼理论的评价,指明了在单分子反应中,反应物分子活化的原因是分子之间的碰撞,而且碰撞活化与压力较高条件下呈一级反应动力学规律并不矛盾。 成功的解释了单分子反应在高压下为一级反应,压力较低时速率常数减小,降低至足够低时,转化为二级反应等。 单分子反应从实质上说,并无简单级数。,成功之处,失败之处,根据该理论的一些假设所求出的活化过程速率常数在数值上与实验结果常有较大差距。,9.8 单分子反应理论简介,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报