收藏 分享(赏)

求函数的解析式.ppt

上传人:jmydc 文档编号:7971121 上传时间:2019-06-01 格式:PPT 页数:21 大小:471KB
下载 相关 举报
求函数的解析式.ppt_第1页
第1页 / 共21页
求函数的解析式.ppt_第2页
第2页 / 共21页
求函数的解析式.ppt_第3页
第3页 / 共21页
求函数的解析式.ppt_第4页
第4页 / 共21页
求函数的解析式.ppt_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、1,第二单元 函 数 3,求函数的解析式,2,掌握求函数解析式的常用方法. (1)换元法或配凑法; (2)待定系数法; (3)构造方程法。,3,本节题型 函数的解析式问题,求下列函数的解析式: (1)已知二次函数满足f(3x+1)=9x2-6x+5,求f(x); (2)已知2f(x)+f(-x)=3x+2,求f(x).,例1,根据条件可灵活运用不同的方法求解.,4,(1)(方法一)待定系数法. 设f(x)=ax2+bx+c(a0), 则f(3x+1)=a(3x+1)2+b(3x+1)+c=9ax2+(6a+3b)x+a+b+c. 又f(3x+1)=9x2-6x+5, 所以9ax2+(6a+3b

2、)x+a+b+c=9x2-6x+5,5,比较两端的系数, 得 9a=96a+3b=-6 ,a+b+c=5 所以f(x)=x2-4x+8. (方法二)换元法. 令t=3x+1,则x= , 代入f(3x+1)=9x2-6x+5中, 得f(t)=9( )2-6 +5=t2-4t+8,所以f(x)=x2-4x+8.,a=1 b=-4 , c=8,解得,6,(方法三)配凑法. 因为f(3x+1)=(3x+1)2-4(3x+1)+8, 所以f(x)=x2-4x+8. (2)直接列方程组求解. 由2f(x)+f(-x)=3x+2,用-x代换此式中的x, 得2f(-x)+f(x)=-3x+2, 解方程组 2f

3、(x)+f(-x)=3x+22f(-x)+f(x)=-3x+2, 得f(x)=3x+ .,7,练一练: (1)已知f(x)是一次函数,且满足 3f(x+1)-2f(x-1) =2x+17,求f(x); (2)已知 (3)已知f(x)满足2f(x)+ =3x,求f(x).问题(1)由题设知f(x)为一次函数,故可先设出f(x)的表达式,用待定系数法求解;问题(2)已知条件是一复合函数的解析式,因此可用换元法;问题(3)已知条件中含x, ,可用构造方程组法求解.,思维启迪,8,函数的解析式是函数与自变量之间的一种对应关系,是函数与自变量之间建立的桥梁.求函数的解析式是高考中的常见问题,其特点是类型

4、活,方法多.求函数的解析式常有以下几种方法:如果已知函数ff(x)的表达时,可用换元法或配凑法求解;如果已知函数的结构时,可用待定系数法求解;如果所给式子含有f(x)、f( )或f(x)、f(-x)等形式,可构造另一方程,通过解方程组求解.,9,解 (1)设f(x)=ax+b(a0), 则3f(x+1)-2f(x-1) =3ax+3a+3b-2ax+2a-2b =ax+b+5a=2x+17, a=2,b=7,故f(x)=2x+7.,(1)已知f(x)是一次函数,且满足 3f(x+1)-2f(x-1) =2x+17,求f(x);,10,(2)已知,11,(3)已知f(x)满足2f(x)+ =3x

5、,求f(x).,12,题型三 分段函数问题,(1)已知函数 f(x)= f (x+2)(x-1)2x+2 (-1x1)2x-4 (x1), 则f f(-2008)= ; (2) f(x)= -x+1(x0)x-1(x0), 则不等式x+(x+1)f(x+1)1的解集是 .,13,(1)已知函数 f(x)= f (x+2)(x-1)2x+2 (-1x1)2x-4 (x1), 则f f(-2008)= ;,0,(1)ff(-2008)=ff(-2006)= ff(-2)=ff(0)=f(2)=22-4=0.,14,15,(3) 设 则fg(3)=_, =_.,7,解析 g(3)=2,fg(3)=f

6、(2)=32+1=7,,16,分段函数的定义域是各段定义域的并集,值域是各段值域的并集; 分段函数求解时,一定要注意自变量的取值范围,从而确定解析式; 分类讨论时,各种条件下的解集一定要与各自的条件取交集,最后所有的解集取并集.,17,已知函数对任意的实数a、b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)求证:f( )+f(x)=0(x0);(3)若f(2)=m,f(3)=n(m、n均为常数),求f(36)的值.,本题是一个抽象函数问题,直接求函数的解析式是不可能的,需通过取特殊值来解决.,18,(1)不妨设a=b=0. 由f(ab)=f(a)+f(b),得

7、f(0)=0. 设a=b=1,得f(1)=0. (2)证明:当x0时,因为x , 于是f(1)=f(x )=f(x)+f( )=0, 所以f( )+f(x)=0.,(3)因为f(2)=m,f(3)=n, 所以f(36)=f(22)+f(32)=f(22)+f(33)=2f(2)+2f(3)=2(m+n).,19,1.已知函数的解析式求其定义域,只要使解析式有意义即可.如分式的分母不等于零,开偶次方的被开方数不小于零,对数的真数大于零且底数大于零而不等于等等.,20,2.求函数的解析式的主要方法有:待定系数法、换元法、配方法、函数方程法、赋值法等.当已知函数为某类基本初等函数时用待定系数法,已知复合函数的问题时用换元法或配凑法,抽象函数问题一般用赋值法或函数方程法.3.分段函数是指自变量在取值情况不同时,对应法则不同.分段函数的定义域为自变量的所有取值的并集.,21,抽象函数由于只给出函数的某些性质,却不知道函数的具体解析式,因而成为函数问题中的一个难点,但这类问题能很好地考查学生的思维能力.解决抽象函数问题,要全面应用其所具有的性质展开解题思路,通常的方法是赋值法,并善于根据题目条件寻找该函数的一个原型,帮助探求结论,找到解题的思路和方法.,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报