1、1. 理解描述质点运动物理量的定义及其矢量性、相对性和瞬时性;2. 掌握运动方程的物理意义,会用微积分方法求解运动学两类问题;3. 掌握平面抛体运动和圆周运动的规律;4. 理解运动描述的相对性,会用速度合成定理和加速度合成定理解题。,教 学基本 要 求,We say an object is in motion when its position, orientation relative to another is changing.,motion,一参考系质点(Reference frame and Particle),Absolute relative to rest,Relative
2、reference body,translation,Rotation (will be discussed in rigid body),motion,Position change,Reference frame,quantitative description,Coordinate system,Reference frame,二位置矢量 位移(position vector and displacement),1. Position Vector,Position vector is a vector that extents from the origin of the coordi
3、nate system to the particles position as shown in Figure,Magnitude:,轨迹方程(path equation),2.运动方程(motion equation),eliminating t,F (x, y, z) = 0,3. Displacement(位移):,Displacement is introduced to describe the change in position during a given time interval:,That is,4 路程(path),From P1 to P2:,(3) Displac
4、ement is a vector while path is a scalar ,Difference between displacement and path,(1) Displacement is unique,Caution,When the particle moves along a straight line and never changes its direction, then we have:,Example : A particle is located at at t1 and at at t2. Find the displacement in this time
5、 interval.,Solution:,Average(平均) velocity:,1.Velocity,which has a direction as same as that of,Average speed(速率):,三速度 加速度(velocity and acceleration),(Instantaneous 瞬时) velocity at time t:,It is in the tangent(切线) of the path and points to the advance direction.,Direction:,Magnitude(大小):,V-speed(瞬时)速
6、率,In the coordinate system:,In three dimension,Magnitude of the velocity:,The angle formed between and +x direction is determined by,一运动质点在某瞬时位于位矢 的端点处,其速度大小为,(A),(B),(C),(D),讨论,注意,Example :A rabbit runs across a parking lot(近路) on which a set of coordinate axes has, strangely enough, been draw. The
7、 coordinates of the rabbits position as function of time t are given by:,with t in seconds and x and y in meters. Find its velocity at t=0.50s.,Solution:,The rabbits velocity at t=0.50s is equal to(等于),2.Acceleration(加速度),Average acceleration:,Instantaneous acceleration,In the coordinate system:,Its
8、 magnitude and direction:,指向曲线凹的一方,In three dimension,Example 已知质点运动方程为x=2t, y=192t2, 式中x, y以米计,t 以秒计,试求:(1)轨道方程;(2)t=1s 时的速度和加速度。,(2)对运动方程求导,得到任意时刻的速度,对速度求导,得到任意时刻的加速度:,解:(1)运动方程联立,消去时间t得到轨道方程,(1),(2),将时间t=1s代入速度和加速度分量式(1)、(2)中,求出时间t=1s对应的速度和加速度:,速度大小和与 x 轴夹角,加速度大小和方向:,与y轴正向相反,Example 离水平面高为h 的岸边,有
9、人用绳以恒定速率V0拉船靠岸。试求:船靠岸的速度,加速度随船至岸边距离变化的关系式?,对时间求导得到速度和加速度:,由题意知:,解:在如图所示的坐标系中,船的位矢为:,因为:,质点运动学两类基本问题,一由质点的运动方程可以求得质点在任一时刻的位矢、速度和加速度;,二已知质点的加速度以及初始速度和初始位置, 可求质点速度及其运动方程,例1-1:设质点运动轨迹的参数方程为求质点t = 3s时的速度和加速度。,解:由轨迹参数方程,即运动方程的分量式可得,由(1)得:,(2),(1),(3),(4),将t3s代入(3)、(4)可得:,例1-2:已知一质点沿x轴方向运动, 其速度的大小与时间的关系为,。在t0时,质点的位置x02m,试求:,(1) t = 2s时质点的位置;(2) t = 3s时质点的加速度。,解:这是一维运动, 由,代入t2s,可得,代入t3s,可得,例1-3: 一质点沿x轴运动,其加速度与位置的关系为a=2x+1。已知质点在x=0处的速度为2m/s, 试求质点在x=5m处的速度。,解:题中未显含时间t,而前面给出的都是r、v与t的关系,因此本题的求解存在一个数学技巧的变换,由,两边积分,,