收藏 分享(赏)

计量经济学2.ppt

上传人:scg750829 文档编号:7903159 上传时间:2019-05-29 格式:PPT 页数:31 大小:328.50KB
下载 相关 举报
计量经济学2.ppt_第1页
第1页 / 共31页
计量经济学2.ppt_第2页
第2页 / 共31页
计量经济学2.ppt_第3页
第3页 / 共31页
计量经济学2.ppt_第4页
第4页 / 共31页
计量经济学2.ppt_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、2.2 一元线性回归模型的参数估计,一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 三、参数估计的最大或然法(ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干扰项方差的估计,单方程计量经济学模型分为两大类:线性模型和非线性模型,线性模型中,变量之间的关系呈线性关系 非线性模型中,变量之间的关系呈非线性关系,一元线性回归模型:只有一个解释变量,i=1,2,n,Y为被解释变量,X为解释变量,0与1为待估参数, 为随机干扰项,回归分析的主要目的是要通过样本回归函数(模型)SRF尽可能准确地估计总体回归函数(模型)PRF。,估计方法有多种,其种最广泛使用的是普通

2、最小二乘法(ordinary least squares, OLS)。,为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。,注:实际这些假设与所采用的估计方法紧密相关。,一、线性回归模型的基本假设,假设1、解释变量X是确定性变量,不是随机变量; 假设2、随机误差项具有零均值、同方差和不序列相关性:E(i)=0 i=1,2, ,nVar (i)=2 i=1,2, ,nCov(i, j)=0 ij i,j= 1,2, ,n假设3、随机误差项与解释变量X之间不相关:Cov(Xi, i)=0 i=1,2, ,n假设4、服从零均值、同方差、零协方差的正态分布iN(0, 2 ) i=1,2, ,

3、n,1、如果假设1、2满足,则假设3也满足;2、如果假设4满足,则假设2也满足。,注意:,以上假设也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模型,也称为经典线性回归模型(Classical Linear Regression Model, CLRM)。,另外,在进行模型回归时,还有两个暗含的假设:,假设5:随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。即,假设6:回归模型是正确设定的,假设5旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生所谓的伪回归问题(spurious regres

4、sion problem)。假设6也被称为模型没有设定偏误(specification error),二、参数的普通最小二乘估计(OLS),给定一组样本观测值(Xi, Yi)(i=1,2,n)要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares, OLS)给出的判断标准是:二者之差的平方和,最小。,方程组(*)称为正规方程组(normal equations)。,记,上述参数估计量可以写成:,称为OLS估计量的离差形式(deviation form)。由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量(ordinary least

5、squares estimators)。,几个常用的结果,顺便指出 ,记,则有,可得,(*)式也称为样本回归函数的离差形式。,(*),注意:在计量经济学中,往往以小写字母表示对均值的离差。,三、参数估计的最大或然法(ML),最大或然法(Maximum Likelihood,简称ML),也称最大似然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其它估计方法的基础。基本原理:对于最大或然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。,在满足基本假设条件下,对一元线性回归模型:,随机抽取n组样本观测值(Xi,

6、Yi)(i=1,2,n)。,那么Yi服从如下的正态分布:,于是,Y的概率函数为,(i=1,2,n),假如模型的参数估计量已经求得,为,因为Yi是相互独立的,所以的所有样本观测值的联合概率,也即似然函数(likelihood function)为:,将该或然函数极大化,即可求得到模型参数的极大或然估计量。,由于或然函数的极大化与或然函数的对数的极大化是等价的,所以,取对数或然函数如下:,解得模型的参数估计量为:,可见,在满足一系列基本假设的情况下,模型结构参数的最大或似然估计量与普通最小二乘估计量是相同的。,例2.2.1:在上述家庭可支配收入-消费支出例中,对于所抽出的一组样本数,参数估计的计算

7、可通过下面的表2.2.1进行。,因此,由该样本估计的回归方程为:,四、最小二乘估计量的性质,当模型参数估计出后,需考虑参数估计值的精度,即是否能代表总体参数的真值,或者说需考察参数估计量的统计性质。,一个用于考察总体的估计量,可从如下几个方面考察其优劣性:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。,(4)渐近无偏性,即样本容量趋于无穷大时,是否它的均值序列趋于总体真值; (5)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值; (6)渐近有效性,即样本容量趋于无穷大

8、时,是否它在所有的一致估计量中具有最小的渐近方差。,这三个准则也称作估计量的小样本性质。拥有这类性质的估计量称为最佳线性无偏估计量(best linear unbiased estimator, BLUE)。,当不满足小样本性质时,需进一步考察估计量的大样本或渐近性质:,高斯马尔可夫定理(Gauss-Markov theorem)在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。,证:,易知,故,同样地,容易得出,(2)证明最小方差性,其中,ci=ki+di,di为不全为零的常数 则容易证明,普通最小二乘估计量(ordinary least Squares Estimators)称为最佳线性无偏估计量(best linear unbiased estimator, BLUE),其中:,由于最小二乘估计量拥有一个“好”的估计量所应具备的小样本特性,它自然也拥有大样本特性。,五、参数估计量的概率分布及随机干扰项方差的估计,2、随机误差项的方差2的估计,由于随机项i不可观测,只能从i的估计残差ei出发,对总体方差进行估计。,2又称为总体方差。,可以证明,2的最小二乘估计量为,它是关于2的无偏估计量。,在最大或然估计法中,,因此, 2的最大或然估计量不具无偏性,但却具有一致性。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报