收藏 分享(赏)

矩阵的基本概念.doc

上传人:kpmy5893 文档编号:7809485 上传时间:2019-05-26 格式:DOC 页数:7 大小:184KB
下载 相关 举报
矩阵的基本概念.doc_第1页
第1页 / 共7页
矩阵的基本概念.doc_第2页
第2页 / 共7页
矩阵的基本概念.doc_第3页
第3页 / 共7页
矩阵的基本概念.doc_第4页
第4页 / 共7页
矩阵的基本概念.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、1 矩阵及其运算教学要求 : 理解矩阵的定义、掌握矩阵的基本律、掌握几类特殊矩阵(比如零矩阵,单位矩阵,对称矩阵和反对称矩阵 ) 的定义与性质、注意矩阵运算与通常数的运算异同。能熟练正确地进行矩阵的计算。 知识要点 :一、矩阵的基本概念矩阵,是由 个数组成的一个 行 列的矩形表格,通常用大写字母 表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素 表示,其中下标 都是正整数,他们表示该元素在矩阵中的位置。比如, 或 表示一个 矩阵,下标 表示元素 位于该矩阵的第 行、第 列。元素全为零的矩阵称为零矩阵。 特别地,一个 矩阵 ,也称为一个 维列向量;而一个 矩阵 ,也称为一个 维行

2、向量。 当一个矩阵的行数 与烈数 相等时,该矩阵称为一个 阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。若一个 阶方阵的主对角线上的元素都是 ,而其余元素都是零,则称为单位矩阵,记为 ,即:。如一个 阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如, 是一个 阶下三角矩阵,而 则是一个 阶上三角矩阵。今后我们用 表示数域 上的 矩阵构成的集合,而用 或者表示数域 上的 阶方阵构成的集合。 二、矩阵的运算1、矩阵的加法 : 如果 是两个同型矩阵(即它们具有相同的行数和列数,比如说 ),则定义它们的和 仍为与它们同型的矩阵(即 )

3、, 的元素为和 对应元素的和,即: 。 给定矩阵 ,我们定义其负矩阵 为: 。这样我们可以定义同型矩阵 的减法为: 。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列 运算律: ( 1)交换律: ; ( 2)结合律: ; ( 3)存在零元: ; ( 4)存在负元: 。 2 、数与矩阵的乘法 : 设 为一个数, ,则定义 与 的乘积 仍为 中的一个矩阵, 中的元素就是用数 乘 中对应的元素的道德,即 。由定义可知: 。容易验证数与矩阵的乘法满足下列运算律: (1 ) ; (2 ) ; (3 ) ; (4 ) 。 3 、矩阵的乘法:设 为 距阵, 为 距阵,则矩阵 可以左乘矩

4、阵 (注意:距阵 德列数等与矩阵 的行数),所得的积为一个 距阵 ,即 ,其中 ,并且。 据真的乘法满足下列 运算律(假定下面的运算均有意义): ( 1)结合律: ; ( 2)左分配律: ; ( 3)右分配律: ; ( 4)数与矩阵乘法的结合律: ; ( 5)单位元的存在性: 。 若 为 阶方阵,则对任意正整数 ,我们定义: ,并规定: 由于矩阵乘法满足结合律,我们有: ,。 注意: 矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(1 )矩阵乘法不满足交换律:一般来讲即便 有意义, 也未必有意义;倘使 都有意义,二者也未必相等(请读者自己举反例)。正是由于这个原因,一般来讲, ,。 (

5、2 )两个非零矩阵的乘积可能是零矩阵,即 未必能推出或者 (请读者自己举反例)。 (3 )消去律部成立:如果 并且 ,未必有 。 4 、矩阵的转置 : 定义:设 为 矩阵,我们定义 的转置为一个 矩阵,并用 表示 的转置,即: 。矩阵的转置运算满足下列运算律: (1 ) ; (2 ) ; (3 ) ; (4 ) 。 5、对称矩阵 : 定义 1.11 阶方阵 若满足条件: ,则称 为对称矩阵;若满足条件: ,则称 为反对称矩阵。若设 ,则 为对称矩阵,当且仅当 对任意的 成立; 为反对称矩阵,当且仅当 对任意的 成立。从而反对称局针对角线上的元素必为零。对称矩阵具有如下性质: (1 )对于任意 矩阵 , 为 阶对称矩阵;而 为 阶对称矩阵; (2 )两个同阶(反)对称矩阵的和,仍为(反)对称矩阵; (3 )如果两个同阶(反)对称矩阵 可交换,即 ,则它们的乘积 必为对称矩阵,即 。 思考题:1 、设 为第 个分量为 ,而其余分量全为零的 维列向量, 为第 个分量为 ,而其余分量全为零的 维列向量, 为 矩阵,试计算 ; 2 、设 为 阶方阵,并且对任意 有 ,你能得出什么结论?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报