1、-1-如何提高 LED 发光效率王文瀚 12S0110291 引言发光二极管(Light Emitting Diode, LED)是一种可将电能转换为光能的有源电子器件,属于电致发光固态光源。与传统的光源相比,具有体积小、寿命长、电压低、节能和环保等优点,是下一代照明的理想选择。但半导体折射率很高,由于全反射等因素,有源层产生的光绝大部分在 LED 内部转换为热能白白损耗掉了,能够辐射到自由空间的光占很小部分,使传统 LED 的出光效率仍然很低,因此提高 LED 的出光效率在节能减排的今天具有重要的意义。本文首先简要介绍了 LED 发光原理,并总结了几种主流的提高 LED 发光效率的方法。2
2、LED 发光原理发光二极管核心是 PN 结,因此它具有一般 PN 结的电流电压特性,即正向导通,反向截止或击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由 N 区注入 P 区,空穴由 P 区注入 N 区。进入对方区域的少数载流子( 少子)一部分与多数载流子(多子) 复合而发光,如图 1 所示。由于复合是在少子扩散区内发光的,所以光仅在靠近 PN 结面数微米以内产生。有几种机制会影响正向电压的高低,包括接触电阻、透明导电层及 P 型与 N 型半导体内的载流子浓度及载流子迁移率。图 1 LED 发光原理假设发光是在 P 区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先
3、被发光中心捕获后,再与空穴复合发光。由不同化学成份的半导体材料,基于它们具有之能隙值各不相同,再经适当的组合后可以得到不同发光波长的-2-发光二极管。3 LED 发光效率描述3.1 内量子效率电子和空穴在 PN 结过渡层中复合会产生光子,然而并不是每一对电子和空穴都会产生光子,由于 LED 的 PN 结作为杂质半导体,存在着材料品质、位错因素以及工艺上的种种缺陷,会产生杂质电离、激发散射和晶格散射等问题,使电子从激发态跃迁到基态时与晶格原子或离子交换能量时发生无辐射跃迁,也就是不产生光子,这部分能量不转换成光能而转换成热能损耗在 PN 结内,于是就有一个复合载流子转换效率。当然,很难去计算复合
4、载流子总数和产生的光子总数。一般是通过测量 LED 输出的光功率来评价这一效率,这个效率就称为内量子效率。用符号 int表示: intint /()LEDPhIe 每 秒 钟 从 有 源 层 辐 射 出 来 的 光 子 数注 入 的 电 子 数3.2 外量子效率辐射复合所产生的光子并不是全部都能离开晶体向外发射,从有源区产生的光子通过半导体有部分可以被再吸收;另外由于半导体的高折射率,光子在界面处很容易发生全反射而返回晶体内部。即使是垂直射到界面的光子,由于高折射率而产生高反射率,有相当部分被返回晶体内部。因此外量子效率可以表示为: /()LEDext PhIe每 秒 钟 辐 射 到 自 由
5、空 间 的 光 子 数注 入 的 电 子 数一般 LED 都以平面结构生长在有光吸收功能的衬底上,上面以环氧树脂圆顶形封装,这种结构的光取出效率非常低,仅为 4左右,所以只有一小部分的光被放出,主要原因有:一是电流分布不当以及光被材料本身所吸收;二是光不易从高折射率的半导体传至低折射率的外围空气(n=1)。由于 LED 材料折射率很高,当芯片发出光在晶体材料与空气界面时,会发生全反射现象,晶体本身对被折回的光有相当一部分的吸收,于是大大降低了外部出光效率。4 提高 LED 发光效率的方法早期 LED 组件发展集中在提升其内部量子效率,方法主要是利用提高芯片的质量及改变芯片的结构,使电能不易转换
6、成热能,进而间接提高 LED 的发光效率,而可获得约 70左右的理论内部量子效率。随着外延生长技术和多量子阱结构的发展,超高亮度发光二极管的内量子效率已有了非常大的改善,如波-3-长 625nm AlGalnP 基超高亮度发光二极管的内量子效率可达至 100,已接近极限。半导体材料本身的光电转换效率已远远高过其它发光光源,因此现在提高芯片的外量子效率是提高发光效率的关键。目前国内外采用的主要技术途径和发展状况阐述如下:4.1 改变芯片外形的技术Krarnes 等人利用特殊的刀具,将 AlInGaP 红光 LED 台面制成平头倒金字塔(TIP)形芯片,键合到透明基片上,实现了 50以上的外量子效
7、率。TIP 结构减少了光在晶体内传输距离、减少了内反射和吸收(有源区吸收和自由截流子吸收等) 引起的光损耗、芯片特性大幅度改善,发光效率达 100 流明/ 瓦(100mA,610nm) ,外量子效率更达到 55(650nm),而面朝下的倒装结构使 P-N 结更接近热沉,改善了散热特性,提高了芯片寿命。对于传统正装 GaN 基LED,可以使用湿法蚀刻的方法将芯片蚀刻出 23侧壁倾斜角用于提高光取出效率,此方法目前已形成规模量产。由 LED 有源层所发出的光,皆为全向性,有部份的光因为折射或反射的关系,沿着水平方向发射出去,这部分光线只是增加光的发散而对元件的发光效率并没有多大帮助,应让光线更多的
8、从正面发射出来。在 GaN 基 LED 中,根据斯涅尔定律 =sin-1(nair/nGaN) (nair=1,n GaN =2.5),即由公式算出其折射临界角约为 23,故可以采用 H3P04 和 H2S04 混合溶液并利用湿法蚀刻的方式在一定温度下,使 GaN 材料与垂直侧边形成一个约 23的侧壁倾角,改变光线的传输方向,使光从正面射出,光亮度更为集中,从而亮度获得提升。如此一来,便可增加光的侧壁全反射机率,其结果如图 2 所示。这样便可使器件的发光亮度更为集中,从而亮度获得提升。(a)光由水平方向射出; (b)使用约 23侧壁倾角结构图 2 使用侧壁倾角技术提高出光率原理4.2 倒装芯片
9、技术GaN 基二极管外延片一般是生长在绝缘的蓝宝石衬底上,欧姆接触的 P 电-4-极和 N 电极只能制备在外延表面的同一侧,正面射出的光部分将被接触电极所吸收和键合引线遮挡。造成光吸收更主要的因素是 P 型 GaN 层电导率较低,为满足电流扩展的要求,覆盖于外延层表面大部分的半透明 Ni-Au 欧姆接触层的厚度应大于 5-10nm,但是要使光吸收最小,则 Ni-Au 欧姆接触层的厚度必须非常薄,这样在透光率和扩展电阻率二者之间则要给以适当的折衷,折衷设计的结果必定使其功率转换的提高受到了限制。2001 年 Lumileds 公司报道了倒装焊技术在大功率 AlInGaN 基芯片上的应用,避免了电
10、极焊点和引线对出光效率的影响,改善了电流扩散性和散热性,背反射膜的制备将传向下方的光反射回出光的蓝宝石一方,进一步提升出光效率,外量子效率达 21,功率换效率达20(20mA,435nm) ,最大功率达至 400mW(驱动电流 1A,435nm,芯片尺寸lmm*lmm),其总体发光效率比正装增加 1.6 倍。4.3 生长分布布拉格反射层(DBR)结构通过外延技术生长具 DBR 层的 GaN 基芯片,DBR 是两种折射率不同的材料周期交替生长的层状结构,它在有源层和衬底之间,能够将射向衬底的光反射回表面或侧面,可以减少衬底对光的吸收,提高出光效率。但由于 DBR 反射率随着入射角的增加迅速减少,
11、以全方位平均仍有较高的光损耗,反射膜效率不高。4.4 表面粗糙化技术表面粗糙化主要是将那些满足全反射定律的光改变方向,继而在另一表面或反射回原表面时不被全反射而透过界面,并能起防反射的功能。这样的方法最早是由日亚化学所提出,其粗化方法基本上是在组件的几何形状上形成规则的凹凸形状,而这种规则分布的结构也依所在位置的不同分为两种形式,一种是在组件内设置凹凸形状,另一种方式是在组件上方制作规则的凹凸形状,并在组件背面设置反射层。由于使用传统制程即可在 GaN 系化合物半导体层的界面设置凹凸形状,因此上述第一种方式具有较高的实用性。目前若使用波长为405nm 的紫外组件,可获得 43外部量子效率,取出效率为 60,为目前全球最高的外部量子效率与取出效率。1999 年 Fuji 报道将 AlInGaN 基芯片键合到硅基板上,再用激光剥离法去除衬底,在 n 型 GaN 表面通过光致电化学法腐蚀形成有序的锥型形状可以增加发光强度 2.3 倍。4.5 光子晶体技术浅二维表面栅格光子晶体可避免对有源区的损伤和在光子晶体制备过程导入太多表面损伤,引发内量子效率的下降,同时又能发挥光子晶体的衍射效应,改变光的入射角而提升出光效率 1.72.7 倍,制作过程涉及电子束光刻或其他刻蚀工艺。