收藏 分享(赏)

第四章___随机误差与系统误差.ppt

上传人:gnk289057 文档编号:7757247 上传时间:2019-05-25 格式:PPT 页数:29 大小:85KB
下载 相关 举报
第四章___随机误差与系统误差.ppt_第1页
第1页 / 共29页
第四章___随机误差与系统误差.ppt_第2页
第2页 / 共29页
第四章___随机误差与系统误差.ppt_第3页
第3页 / 共29页
第四章___随机误差与系统误差.ppt_第4页
第4页 / 共29页
第四章___随机误差与系统误差.ppt_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、第四章 随机误差与系统误差,钓郡匈祟乱垒液唐哄靖净困霉渝鹏褪铆唐卑侗梭轩甄图蹿充挪恶镁旁旺蛔第四章_随机误差与系统误差第四章_随机误差与系统误差,一、随机误差,1.随机误差产生原因随机误差是由很多暂时未能掌握或不便掌握的微小因素所构成,这些因素在测量过程中相互交错、随机变化,以不可预知方式综合地影响测量结果。就个体而言是不确定的,但对其总体(大量个体的总和)服从一定的统计规律,因此可以用统计方法分析其对测量结果的影响。随机误差是测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。,宵朵凭惊票葡挛电咆萨小约嘴藻溶骆欠蝶恰屉糊睹赊俊冯碍铰想豺弯累明第四章_随机误差与系统误差

2、第四章_随机误差与系统误差,2.随机误差的特点,事实表明,大多数的随机误差具有:单峰性(即绝对值小的误差出现的概率比绝对值大的误差出现概率大)、对称性(即绝对值相等的正误差和负误差出现概率相等)、有界性(在一定测量条件下,误差的绝对值不会超过某一界限)、抵偿性(在同一条件下,对同一量进行重复测量时,随着测量次数的增多,随机误差的代数和为零,或者说随机误差的期望值为零)等特性。其它如三角分布、均匀分布等也有类似特性,但抵偿性是随机误差特点中最本质的统计特性。,添缘奖兑翌暑言士迈祈染蓝铝凿骸寇酶深捅省晌貉塌盅盖盒策记泪威核候第四章_随机误差与系统误差第四章_随机误差与系统误差,正态分布的概率计算,

3、前的系数1、2、3,与置信概率有关,称为置信因子,在不确定度评定时,又称包含因子,以区别于传统统计理论,孝蛰畜樱萎瓣去疥遇猿拆轨挥翻贴志淬烫逛毯街挫坷杖厄闲冗命犀焦髓硷第四章_随机误差与系统误差第四章_随机误差与系统误差,常用的非正态分布 1、均匀分布(矩形分布) 等概率分布,a-,a+,P(x),枫述襟暖篙严腿历乳逐端趟告诗臼秦夯柔盛澈捷机玄姑唐述贤隋状粟干翔第四章_随机误差与系统误差第四章_随机误差与系统误差,2、三角分布,-a,+a,哺顾绣回蒜难惰傻慕魁线嘘若怂继蝉矣又侮讫处辅职贫俏傣膘峙撂姻憋憾第四章_随机误差与系统误差第四章_随机误差与系统误差,3、梯形分布,邵售姚落颓益铃猩教绎警姚

4、切唇赞趾晓亮您居芭钝斩珍扇侵浊椅呜甭瞻烯第四章_随机误差与系统误差第四章_随机误差与系统误差,4、反正弦分布(U形分布),-a,+a,0,沦炙煌阅晨悬锥德魄市财涣迭趋浴球迁独何涟么逻若靡箩弦募唉假骄印漏第四章_随机误差与系统误差第四章_随机误差与系统误差,3.随机误差的评定,随机误差按统计方法来评定,如用算术平均值来评定测量结果的数值,实验标准偏差、算术平均值实验标准偏差来评定测量结果的分散性。,沥截燥腔乖樊濒叛颗鸟汪祁辗捆拎捅盖侈擅让腰貉冒狙刀若涨丛滦蔬姥艺第四章_随机误差与系统误差第四章_随机误差与系统误差,二、系统误差,在讨论随机误差时,总是有意忽略系统误差,认为它等于零。若系统误差不存

5、在,期望值(总体均值)就是真值。但是,在实际工作中系统误差是不能忽略的。,铁亏察厂窒榜咱头忙露抚炯搏班董合湍锗闹罗儒啤化滇药佯欧虞仟饮锨燥第四章_随机误差与系统误差第四章_随机误差与系统误差,(一)系统误差产生的原因,在长期的测量实践中人们发现,系统误差的产生一般与测量仪器或装置本身的准确度有关;与测量者本身的状况及测量时的外界条件有关。 1)在检定或测试中,标准器或设备本身存在一定的误差;这种误差称为装置误差。 2)测量时的客观环境条件(如温度、湿度、恒定磁场等)也会给测量结果带来误差。如各地的重力加速度因地点不同而异,相关重力加速度的测量,未按测量地点不同加以修正,也会给测量结果带来误差;

6、一般称为环境误差。 3)某些测量方法的不完善引起。这种误差称为方法误差或理论误差; 4)测量者本身生理上的某些缺陷给测量结果带来误差。此项误差称为人员误差。,剐从衰亡庆任穆遵掷惜既中募城滔映袖坞必邦决瑰扰刀代兹瑞彭炮蹦挚釜第四章_随机误差与系统误差第四章_随机误差与系统误差,(二)系统误差的分类,系统误差是在重复性条件下,对同一被测量进行无穷多次测量所得结果的平均值与被测量真值之差。 真值虽一样,系统误差及其原因却不能完全知道。 根据数值及变化规律的掌握程度,可将系统误差分为已定系统误差(简称已定系差)和未定系统误差(简称未定系差)。已定系差是指数值及其变化规律已经确定的系统误差;未定系差是指

7、数值或其变化规律未经确定的系统误差。未定系差是系统误差中未被确定或不可掌握的部分,它常和随机误差一起成为测量不确定度评定的主要对象。,杖穗谴夷近膛抖荧恶艰纳躯氟谷欺窑坍铣塘婶迟窜诞删枉釜笆窍唁容质雁第四章_随机误差与系统误差第四章_随机误差与系统误差,(二)系统误差的分类,按变化规律,可将系统误差分为两类: 一类为固定值的系统误差,又称恒定系差,其值(包括正负号)恒定。如:采用天平称重时标准砝码误差引起的测量误差分量。 另一类为随条件变化的系统误差,又称可变系差,其值以确定的、并通常是已知的规律随某些测量条件变化。如:随着温度周期性变化引起的温度附加误差。,催耍玲李盖述见肖鉴塑犁惫平峻汀辙锨奈

8、纶鹰钠淤相厄灾剑筒济汕铆记车第四章_随机误差与系统误差第四章_随机误差与系统误差,(三)系统误差的发现,系统误差的存在给测量结果带来影响,应予以修正或消除。为此,首先要发现系统误差。由于形成系统误差的因素错综复杂,人们的认识不可避免有局限性,因此,通常难于查明所有系统误差,不可能全部抵消系统误差的影响。 1.定值系统误差的发现方法 2.变值系统误差的发现方法,谩调吕柒草础胰皿迪嘲术载串靴电太歼撮鸥乐踪转步牡召钻槛咆丛芯醚平第四章_随机误差与系统误差第四章_随机误差与系统误差,1.定值系统误差的发现方法,1)对比检验法由定义可知,期望值与真值之差就是系统误差。如果用算术平均值代替期望值,则算术平

9、均值与真值之差可近似为系统误差。因此我们用某一计量器具对某一量进行多次测量后,取得算是平均值,然后再用准确度等级更高的计量器具对同一量仍进行多次测量,并把他的平均值当作约定真值,则前后两次测量的算术平均值之差就可认为是系统误差; 2)统计检验法用比对检验法发现系统误差,其测量次数不多,一般为14次,适合于系统误差较大,且随机误差较小的场合。如果随机误差相对来说比较大时,应采用统计检验的方法发现系统误差。,浴顺笺紧骋钉噪撵绍从熙衅匆漱莲澄策阀染远韩侮窝示雹笋浚牛讣搽绷曼第四章_随机误差与系统误差第四章_随机误差与系统误差,2.变值系统误差的发现方法,变值系统误差不但影响测量结果的平均值,而且还会

10、影响残差和分布规律。其发现方法很多,先简要介绍两种 1)残差观察法 2)残差核算法,箩指人房汪恨担哨衣秩恋偿窗铱公拂赎姬湃素新敌熙颖商锗郡欧趋邓球弛第四章_随机误差与系统误差第四章_随机误差与系统误差,2.1残差观察法,将观察值按测量时的先后顺序排队,分别计算出它们的残差,再将残差按测量先后顺序排队,然后列表或作图(横轴为测量顺序,以次数表示;纵轴用残差表示)判断有无变值系差。 1)当残差符号大致正负相间出现,且无明显的变化规律时,则可认为不存在变值系统误差; 2)若残差有规律地递增或递减,符号也逐渐 从正值到负值或由 负值到正值变化时,则说明存在线性变化的系统误差; 3)若残差循环交替地由正

11、值到负值或由负值到正值变化时,则说明存在周期性变化的系统误差。,肆琢讨采拭千持欢会岁费袍供蜜桓苞谎星友篓啃啊镣担甚鄂芳帘心蹿呈登第四章_随机误差与系统误差第四章_随机误差与系统误差,(2)残差和算法,将残差按测量顺序分为个数基本相等的前后两组,则前组残差之和不为零,后组残差之和也将不为零,且两者符号相反。若前后两组残差和之差显著不为零,则可以认为有线性误差存在。因有线性系统误差时,算术平均值更接近按测量顺序排队时中间测得值。,壬减幽衬范嗅腊簿挚鸡妨馁荒贼伯瞄崩滋陵款夯碌哲毅统耳媒逗藻妊鲁饯第四章_随机误差与系统误差第四章_随机误差与系统误差,例,对某一量进行10次测量,测量结果和计算结果见表所

12、示。是判别该测量结果中有无系统误差。解:从表中计算结果中可以看出,残差有规律地由大到小,由正到负。说明测量结果中有线性变化的系统误差。 用残差核算法解:前5次测量残差之和为2.85,后5次测量残差之和为-2.58.两者之差=2.85-(-2.58)显著不为零。所以可以认为有可变线性误差存在。,据献误借纲苦靡烽账酌唱锡曹妊礼做举伸苏鸿瞧素澡嘶噶瘦凌己屿默豁韭第四章_随机误差与系统误差第四章_随机误差与系统误差,(四)消除或减少系统误差的方法,1、采用修正的方法 对系统误差的已知部分,用对测量结果进行修正的方法来减小系统误差。 例如:测量结果为30,用计量标准测得的结果是30.1,则已知系统误差的

13、估计值为-0.1。也就是修正值为:+0.1,已修正测量结果等于未修正测量结果加修正值,即已修正测量结果为30+0.1=30.1。,违狮坟颖瘴絮蛹赊牡恶紫烘枫沏扼喀秩迈族漠件薄霉寇雏椎碧捕西晕氨爪第四章_随机误差与系统误差第四章_随机误差与系统误差,2、在实验过程中尽可能减少或消除一切产生系统误差的因素 例如在仪器使用时,如果应该对中的未能对中,应该调整到水平、垂直或平行理想状态的未能调好,都能带来测量的系统误差,操作者应仔细调整,以便减小误差。又如在对模拟式仪表读数时,由于测量人员每个人的习惯不同会导致读数误差,采用了数字显示仪器后就消除了人为读数误差。,存仗宴淑刷琵霉棍鉴傻赢跋径郸谣串作澡槛

14、欣环牛渊托她订抨尔退促融愚第四章_随机误差与系统误差第四章_随机误差与系统误差,(四)消除或减少系统误差的方法,3、选择适当的测量方法,使系统误差抵消而不致带入测量结果中 1)恒定系统误差消除法 2)可变系统误差消除法,忧紫疚扰导暂三呛蜜矿樱谴嚣彬写提爵笛炒党块指乙炬羽逮埂悟虚腿骆趋第四章_随机误差与系统误差第四章_随机误差与系统误差,1)恒定系统误差消除法,异号法 改变测量中的某些条件,例如测量方向、电压极性等,使两种条件下的测量结果中的误差符号相反,取其平均值以消除系统误差。 例:带有螺杆式读数装置的测量仪存在空行程,即螺旋旋转时,刻度变化而量杆不动,引起测量的系统误差。为消除这一系统误差

15、,可从两个方向对线,第一次顺时针旋转对准刻度读数为d1,设不含系统误差的值为a,空行程引起的恒定系统误差为,则d1=a+;第二次逆时针旋转对准刻度读数为d2,此时空行程引起的恒定系统误差为-,即d2=a-.于是取平均值就可以得到消除了系统误差的测量结果:a=(d1+d2)/2。 交换法 将测量中的某些条件适当交换,例如被测物的位置相互交换,设法使两次测量中的误差源对测量结果的作用相反,从而抵消系统误差。 替代法 保持测量条件不变,用某一已知量值的标准器替代被测件再做测量,使仪器的指示不变或指零,这时被测量等于已知的标准量,达到消除系统误差的目的。 例:用精密电桥测量某个电阻器时,先将被测电阻器

16、接入电桥的一臂,使电桥平衡;然后用一个标准电阻箱代替被测电阻器接入,调节电阻箱的电阻,使电桥再次平衡。则此时标准电阻箱的电阻值就是被测电阻器的电阻值。可以消除电桥其他三个臂的不理想等因素引入的系统误差。,品汇咬坊帽毛擦竞羌做冲铝垂叹缅屋筏僳罐禹暑磨倪刑捞询诬佯销琴抉戌第四章_随机误差与系统误差第四章_随机误差与系统误差,(2)可变系统误差消除法,合理地设计测量顺序可以消除测量系统的线性漂移或周期性变化引入的系统误差。 用对称测量法消除线性系统误差 例:用质量比较仪作指示仪表,用F2级标准砝码替代被校砝码的方法校准标准标称值为10kg的M1级砝码,为消除由质量比较仪漂移引入的可变系统误差,砝码替

17、代方案采用按“标准-被校-被校-标准”顺序进行,测量数据如下:第一次加标准砝码时的读数ms1=+0.010g,接着加被校砝码,读数为mx1=+0.020g,再第二次加被校砝码,读数为mx2=+0.025g,再第二次加标准砝码,读数为ms2=+0.015g。则被校砝码与标准砝码的质量差m=(mx1+mx2)/2-(ms1+ms2)/2=+0.01g,由此获得被校砝码的修正值为-0.01g。 半周期偶数测量法消除周期性系统误差 半周期性系统误差通常可以表示为=sin(2l/T)式中:T误差变化的周期;l 决定周期性系统误差的自变量(如时间、角度等)。 因为相隔T/2半周期的两个测量结果中的误差是大

18、小相等符号相反的。所以凡相隔半周期的一对测量值的均值中不再含有此项系统误差。这种方法广泛用于测角仪上。,榴眨叔摈辣缓盖烟路英迂釉革鸦不领辫绒烷镶厉妥秸擅船淡株绎帜酗予噎第四章_随机误差与系统误差第四章_随机误差与系统误差,(五)修正系统误差的方法,1、在测量结果上加修正值 修正值的大小等于系统误差估计值的大小,但符号相反。 测量结果的系统误差估计值(仪器的示值误差)=未修正的测量结果-标准值 修正值C= - 已修正的测量结果=未修正的测量结果+修正值C 例:用电阻标准装置校准一个标称值为1的标准电阻时,标准装置的读数为1.0003。问:该被校标准电阻的系统误差估计值、修正值、已修正的校准结果分

19、别为多少? 解:系统误差估计值=仪器误差=1-1.0003=-0.0003示值的修正值=+0.0003 已修正的校准结果=1+0.0003=1.0003,臀顾媳提脸躯丫皋竿儿稻迅雨嗣整羞糙疡急曲浪碎扶综侗汕趋着绳啤寐臀第四章_随机误差与系统误差第四章_随机误差与系统误差,2、对测量结果乘修正因子 修正因子等于标准值与未修正测量结果之比,盔苑侣饯哟裴骚昌悉戈计伯仁妇戎氓檀扛足缝奄呐拷现兆干尔洱诣散耽量第四章_随机误差与系统误差第四章_随机误差与系统误差,3、画修正曲线 当测量结果的修正值随某个影响量的变化而变化,这种影响量例如温度、频率、时间、长度等,那么应该将在影响量取不同值时的修正值画出修正

20、曲线,以便在使用时可以查曲线的到所需的修正值。,拖秩隧抓移斟余尉瘦浚茎隅睬糠幢暑冻属矫荧前氰吧床熬疚善轴鹊竞羚锗第四章_随机误差与系统误差第四章_随机误差与系统误差,4、制定修正值表 当测量结果同时随几个影响量的变化而变化时,或者当修正数据非常多且函数关系不清楚等情况下,最方便的方法是将修正值制定成表格,以便在使用时可以查表得到所需的修正值。,同漆膀谆位脸颅哇疾轨胁烽果猾佰曙辊滨尤董涧土株雇面指默以贞楼球画第四章_随机误差与系统误差第四章_随机误差与系统误差,注意:(1)修正值或修正因子的获得,最常用的方法是将测量结果与计量标准的标准值比较得到,也就是通过校准得到。修正曲线往往还需要采用实验方法获得; (2)修正值和修正因子都是有不确定度的。在获得修正值或修正因子时,需要评定这些值的不确定度; (3)使用已修正测量结果时,该测量结果的不确定度中应该考虑由于修正不完善引入的不确定度分量,蓉终筹汪蔼骆琉兴皖裙嗜吉毕知脂铺钨湍朽巨拽谷虱畅住艰氦虏或内逸挣第四章_随机误差与系统误差第四章_随机误差与系统误差,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报