1、1神经病理性疼痛-电压门控性钠离子通道机制的新进展任荣荣 综述 王英伟 审校(上海交通大学医学院附属新华医院麻醉科,上海 200092)【摘 要】神经病理性疼痛是慢性疼痛的主要类型之一,是由外周或中枢神经感染、创伤、压迫、代谢障碍等因素导致的难治性疼痛。电压门控性钠离子通道的异常表达和异常兴奋是产生神经病理性疼痛的主要机制之一。电压门控性钠离子通道由和亚基构成,亚基在神经病理性疼痛发病机制中起着重要的作用,本文重点对 亚基在神经病理性疼痛发病机制的研究进展做一综述。【关键词】神经病理性疼痛;电压门控性钠离子通道;亚基Mechanism of neuropathic pain- advance
2、of voltage-gated sodium channelsRen Rong-rong reviewer,Wang Ying-wei reviser(Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China)Abstract: Neuropathic pain is one of main types of the chronic pain. It is an intractable pain caused by
3、 infection, primary lesion, oppression and dysfunction of the peripheral or central nervous system. Abnormal excitement and expression of voltage-gated sodium channel may contribute to the mechanism of neuropathic pain. Voltage-gated sodium channel is composed of and subunits. Many studies indicated
4、 that subunit is more important than subunit in the pathogenesis of neuropathic pain. This paper emphasizes on the advanced researches of subunit in the pathogenesis of neuropathic pain.Key words: neuropathic pain; voltage-gated sodium channels; subunits基金项目: 上海市科委重点科研资助课题(07ZZ29) (Shanghai Educatio
5、n Committee Foundation, 07ZZ29)作者简介:任荣荣(1981) ,女,山东人,硕士生; 电子邮箱:2神经病理性疼痛是一种主要由外周或中枢神经感染、创伤、压迫、代谢障碍等因素引起的难治性疼痛 1。目前已证实 2,感觉神经元的电压门控性钠离子通道在神经病理性疼痛中起着重要的作用,涉及钠通道阻断的药物,如抗惊厥剂、抗心律失常剂、局麻药等对神经病理性疼痛都有一定的治疗作用。电压门控性钠离子通道由和 亚基组成,亚基分为Nav1.1 Nav1.9和Nax (一个胶质细胞源性电压门控性钠离子通道亚型)十种亚型;亚基分为 1、 2、 3、 4四种亚型 3,4 。目前,人们主要通过对
6、这些通道亚基的基因过表达、基因下调、基因敲除及基因突变等实验手段,研究神经病理性疼痛的钠离子通道机制和治疗方法。1 电压门控性钠离子通道的结构电压门控性钠离子通道是一种跨膜糖蛋白,由一个大的亚基和多个亚基组成。亚基是其功能性单元,由四个高度相似的同源结构域组成(、) ,四个结构域围绕一个中心形成离子通道的中央孔,每个结构域含有6个螺旋跨膜片断(S1S6) 。编码亚基的是一个多基因家族, 研究发现:其十种亚型(N av1. 1 N av1. 9,Nax)存在于啮齿类动物的中枢和外周神经系统和其它可兴奋细胞(心肌和骨骼肌)中。亚基为辅助亚基,对 亚基的功能起着重要的调控作用 3-6。2 亚基与神经
7、病理性疼痛2.1 Nav1.3亚基 Nav1.3在胚胎小鼠背根神经节( dorsal root ganglion, DRG)中表达较高,而在成年小鼠DRG中表达较少。有研究表明 7,8 :在横断脊髓背根神经节状态下,成年小鼠的背根神经节和脊髓背角中的Nav1.3 mRNA、蛋白的表达水平都明显上调。2006年,Peng 等 9也证明:丘脑三级神经元的Nav1.3 在坐骨神经慢性缩压性损伤时表达明显上调。同年,Hains等 10 发现:大鼠第七胸椎平面的脊神经钝挫伤(spinal cord contusion injury,SCI)后会导致丘脑腹后外侧核(the ventral posterol
8、ateral,VPL)感受区域增大,伴随簇状的异常放电。SCI 损伤四周后,VPL区域Nav1.3 蛋白表达上调,连续腰椎鞘内注射Nav1.3的反义寡核苷酸(antisense oligodeoxynucleotides,ASONs )四天可逆转异常的簇状放电,说明在SCI后,丘脑的神经元发生了与Nav1.3 异常表达相关的电生理改变。这些研究表明:Nav1.3表达与中枢性神经病理性疼痛有某种功能联系。32.2 Nav1.7亚基 Nav1.7大多数表达在DRG小C 纤维的伤害性感受器上,少数分布在中等大小和大的A类细胞上 11 。在脊神经结扎的实验小鼠模型中,Nav1.7 mRNA水平下调超过
9、50% 12, 13 。最近有文献报道 14 :特异敲除伤害性感受器上的Nav1.7 后,小鼠机械痛域和热痛阈都上调。Cox等 15 研究发现:巴基斯坦一先天无痛觉家庭的孩子没有痛觉是因为基因SCN9A(编码Nav1.7 的基因)发生突变,使得Nav1.7钠通道无功能。不久,Ahmad等 16 分析先天性痛觉丧失家族的基因组时,发现:在染色体2q24.3的SCN9A第984位核苷酸C突变成A,第328位的酪氨酸突变为终止密码子,产生无功能的产物且体内无代偿机制,人便失去痛觉,提示痛觉丧失与Nav1.7功能直接相关。Drenth等 17-19 研究分析原发性红斑性肢痛症遗传家族的基因时,发现:基
10、因SCN9A的721位核苷酸发生了错义突变,第241位的丝氨酸突变为苏氨酸,这种突变导致Nav1.7兴奋性增强,说明痛觉超敏也与Nav1.7功能直接相关。2.3 Nav1.8亚基 Nav1.8主要分布在伤害性感受神经元上 20 。有文献报道 21:使用反义 寡核苷酸特异性地降低Nav1.8在DRG 神经元中的表达,可抑制弗氏佐剂(complete Freunds adjuvant, CFA)诱导的炎症热痛觉过敏,但对神经损伤所导致的行为学改变无影响。免疫组化和电生理结果表明 22 :受损腰椎的DRG 细胞体 Nav1.8蛋白和TTX不敏感的钠电流表达都下调,而未受损的腰椎DRG细胞体以上指标与
11、对照组没有显著差异。最近一项研究发现 23 :当逐渐降低小鼠皮肤表面温度时,传导伤害性感觉纤维上的TTX敏感的钠离子通道会慢慢失活,当Nav1.8 失活时,小鼠表现为对冷不敏感,同样,处于低温时,Nav1.8无效突变的小鼠对伤害性的冷刺激和机械性刺激都不敏感。这说明:当处于低温时,Nav1.8 对于伤害性感受器的兴奋性维持是必不可少的。这些研究进一步揭示:Nav1.8 在初级传入神经元中与神经病理性疼痛有着密切的联系,提示Nav1.8可能成为临床治疗神经病理性疼痛的新靶点。2.4 Nav1.9亚基 Nav1.9主要在DRG表达,并且在海马有低水平的表达。Priest等 24研究发现:坐骨神经部
12、分结扎模型中,编码Nav1.9的基因SCN11A 无效突变的小鼠与野生型小鼠机械痛阈无显著差异,但是CFA诱导的炎症反应中,Nav1.9mRNA在第七天约上调两倍。神经痛大鼠模型使用Nav1.9 的反义ODN降低其表达后,大鼠对热觉过敏和触觉过敏无明显改变。Wood等 25研究表明:糖4尿病实验模型异常疼痛开始时,Nav1.3、Nav1.8 、Nav1.9的mRNA和蛋白表达都有上调,但是在外周神经横断损伤神经模型中Nav 1.8、Nav1.9表达却下调了。这些实验表明:Nav1.9 可塑性与神经病理性疼痛的关系尚需进一步研究。2.5 Nav1.1、Nav1.2 与Nav1.6亚基 Nav1.
13、1主要在中枢神经系统和背根神经节中表达;Nav1.2 主要在中枢神经系统中表达;Nav1.6主要在背根神经节和运动神经元上表达 26。当慢性压缩性损伤时,这三个亚基没有明显的变化 9。 但也有文献报道 27:当神经损伤时,Nav1.1、Nav1.2、Nav1.6mRNA的表达是下调的。有关这些亚基与神经病理性疼痛的关系还需进一步的研究。3 亚基与神经病理性疼痛亚基选择分布在背根神经节和脊髓感觉传入的旁路上,它能起到辅助钠通道亚基的作用 6,其作用也越来越受到重视。 1亚基主要表达于DRG 的大细胞、中细胞中, 2亚基在 DRG细胞中不表达, 3亚基主要在 DRG小细胞中表达。有文献报道 6:部
14、分坐骨神经结扎术后建立大鼠神经病理性疼痛模型的第14天,与对照组相比,DRG细胞中钠离子通道 1亚基表达无明显变化, 3亚基表达明显上调;Pertin等 28用大鼠脊神经结扎损伤模型研究了 2亚基的变化:在损伤神经元,纤维,受损神经元残体及相邻未受损的神经元 2蛋白表达都会上调,这种变化是通过激活转录因子,如:转录激活因子3(activating transcription factor 3, ATF3)来实现的。慢性压缩性损伤后, 3mRNA水平基本不变,但在糖尿病神经病理性疼痛中 3mRNA水平上调 29。推测亚基是通过调节钠通道密度和分布,影响神经病理性疼痛的。4 小结综上所述,电压门控
15、性钠离子通道与神经病理性疼痛密切相关。随着对钠离子通道功能的进一步了解,钠离子通道亚基可塑性和功能的改变与神经病理性疼痛的关系将逐渐清晰。未来在基因水平上通过对基和亚基的转基因和基因沉默研究,将为更深入地了解神经病理性疼痛的发病机制提可靠的理论依据。5参考文献1 Colombo B, Annovazzi PO, Comi G. Medications for neuropathic pain: current trends J. Neurological Sciences, 2006, 27 (Supplement 2): S183-S189.2 Tarnawa I, Blcskei H, K
16、ocsis P. Blockers of voltage-gated sodium channels for the treatment of central nervous system diseases. Recent Patents on CNS Drug Discovery, 2007, 2(1):57-78.3 Ekberg J, Adams DJ. Neuronal voltage-gated sodium channel subtypes: key roles in inflammatory and neuropathic pain J. The International Jo
17、urnal of Biochemistry & Cell Biology, 2006, 38(12):2005-2010.4 Kolibal SS, Brady C, Cohen SA Definition of Epitopes for Monoclonal Antibodies Developed Against Purified Sodium Channel Protein: Implications for Channel Structure J. Membrane Biology, 1998, 165(1), 9199.5 Catterall WA. Cellular and mol
18、ecular biology of voltage gated sodium channels J. Physiology Review, 1992, 72(4): S15-S48.6 王英伟,卞金俊,邓小明,等. 神经病理疼痛大鼠背根神经节钠离子通道亚基mRNA 表达的变化J. 中华麻醉学杂志, 2006, 26(6):555-557. 7 Xiao HS, Huang QH, Zhang FX, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axo
19、tomy model of neuropathic pain J. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12):83608365. 8 Waxman SG, Kocsis JD, Black JA. Type sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons and is re-expressed following axotomy J.
20、 Journal of Neurophysiology, 1994, 72(1):466-470. 9 Zhao P, Waxman SG, Hains BC. Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury J. Molecular Pain, 2006, 2(27):1-10.10Hains BC, Saab CY, Waxman SG. Alterations in burst firing of thalamic V
21、PL neurons and reversal by Nav1.3 antisense after spinal cord injury J. Journal of Neurophysiology, 2006, 95(6):3343-3352. 611Djouhri L, Newton R, Levinson SR, et al. Sensory and electrophysiological properties of guinea-pig sensory neurons expressing Nav1.7 (PN1) Na+ channel alpha subunit protein J
22、. Journal of Physiology, 2003, 546(2):565576.12Raymond CK, Castle J, Engele GP, et al. Expression of alternatively spliced sodium channel alpha-subunit genes. Unique splicing patterns are observed in dorsal root ganglia J. The Journal of Biological Chemistry, 2004, 279(44):4623446241.13Kim CH, Oh Y,
23、 Chung JM, et al. Changes in three subtypes of tetrodotoxin sensitive sodium channel expression in the axotomized dorsal root ganglion in the rat J. Neuroscience Letter, 2002, 323(2):125128.14Nassar MA, Stirling LC, Forlani G, et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7
24、(PN1) in acute and inflammatory pain J. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(34):1270612711.15Cox JJ, Reimann F, Nicholas AK, et al. An SCN9A channelopathy causes congenital inability to experience pain J. Nature, 2006, 444(7121):894-898. 16Ahmad
25、 S, Dahllund L, Eriksson AB. A stop codon mutation in SCN9A causes lack of pain sensation J. Human Molecular Genetics, 2007, 16(17):2114-2121. 17Drenth JP, Morsche RH, Guillet G, et al. SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels J. Journal
26、 of Investigative Dermatology, 2005, 124(6):13331338. 18Drenth JP, Morsche RH, Michiels JJ. From gene to disease: primary erythermalgia-a neuropathic disease as a consequence of mutations in a sodium pump gene J. Ned Tijdschr Geneeskd, 2006, 150(4):194-196.19Michiels JJ, Morsche RH, Jansen JB, et al
27、. Autosomal dominant erythermalgia associated with a novel mutation in the voltage-gated sodium channel alpha subunit Nav1.7 J. Archives of Neurology, 2005, 62(10):1587-1590. 20Novakovic SD, Tzoumaka E, McGivern JG, et al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory
28、neurons in normal and neuropathic conditions J.The Journal of Neuroscience, 1998, 18(6):2174-2187.721Porreca F, Lai J, Bian D, et al. A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2 in rat models of chronic pain J. The Proceedings of National
29、Academy Sciences of USA, 1999, 96(14):7640-7644.22Gold MS, Weinreich D, Kim CS, et al. Redistribution of Nav1. 8 in uninjured axons enables neuropathic pain J. The Journal of Neuroscience, 2003, 23(1): 158-166.23Zimmermann K, Leffler A, Babes A, et al. Sensory neuron sodium channel Nav1.8 is essenti
30、al for pain at low temperatures J. Nature, 2007, 447(7146):855-858. 24Priest BT, Murphy BA, Lindia JA, et al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel Nav1.9 to sensory transmission and nociceptive behavior J. The Proceeding of the National Academy of Science, 2005, 10
31、2(26):93829387.25Wood JN, Boorman JP, Okuse K, et al. Voltage-gated sodium channels and pain pathways J. Journal of Neurobiology, 2004, 61(1):55-71. 26Rogers M, Tang L, Madge DJ, et al. The role of sodium channels in neuropathic pain J. Seminars in Cell and Developmental Biology, 2006, 17(5):571-581
32、.27Lindia JA, Khler MG, Martin WJ, et al. Relationship between sodium channel Nav1.3 expression and neuropathic pain behavior in rats J. Pain, 2005, 117(1-2):145-53. 28Pertin M, Ji RR, Berta T, et al. Upregulation of the voltage-gated sodium channel beta2 subunit in neuropathic pain models: characte
33、rization of expression in injured and non-injured primary sensory neurons J. The Journal of Neuroscience, 2005, 25(47):1097010980.29Takahashi N, Kikuchi S, Dai Y, et al. Expression of auxiliary beta subunits of sodium channels in primary afferent neurons and the effect of nerve injury J. Neuroscience, 2003, 121(2): 441450.