收藏 分享(赏)

2011年考博生物化学与分子生物学重点三.doc

上传人:HR专家 文档编号:7496891 上传时间:2019-05-20 格式:DOC 页数:6 大小:19KB
下载 相关 举报
2011年考博生物化学与分子生物学重点三.doc_第1页
第1页 / 共6页
2011年考博生物化学与分子生物学重点三.doc_第2页
第2页 / 共6页
2011年考博生物化学与分子生物学重点三.doc_第3页
第3页 / 共6页
2011年考博生物化学与分子生物学重点三.doc_第4页
第4页 / 共6页
2011年考博生物化学与分子生物学重点三.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、2011年考博生物化学与分子生物学重点三2011年考博生物化学与分子生物学重点三2011年05月23 日第四章酶 一、酶的概念: 酶(enzyme)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本质是蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体和多功能酶)三大类。 二、酶的分子组成: 酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅助因子两部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关。 与酶蛋白疏松结合并与酶的催化活性有关的耐热低分子有机化合物称为辅酶。与酶蛋白牢固结合

2、并与酶的催化活性有关的耐热低分子有机化合物称为辅基。 三、辅酶与辅基的来源及其生理功用: 辅酶与辅基的生理功用主要是: 运载氢原子或电子,参与氧化还原反应。 运载反应基团,如酰基、氨基、烷基、羧基及一碳单位等,参与基团转移。大部分的辅酶与辅基衍生于维生素。 维生素(vitamin)是指一类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给的小分子有机化合物。 维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有VitA、VitD、VitE和VitK四种;水溶性维生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素

3、,叶酸等。 1.TPP:即焦磷酸硫胺素,由硫胺素(Vit B1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中-酮酸的氧化脱羧反应。 2.FMN和FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的衍生物。FMN或FAD通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)。 3.NAD+和NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,辅酶)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶),是Vit PP的衍生物。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单递氢体。 4.磷酸吡哆醛和磷酸吡哆胺:是Vit B6的衍生物

4、。磷酸吡哆醛和磷酸吡哆胺可作为氨基转移酶,氨基酸脱羧酶,半胱氨酸脱硫酶等的辅酶。 5.CoA:泛酸(遍多酸)在体内参与构成辅酶A(CoA)。CoA中的巯基可与羧基以高能硫酯键结合,在糖、脂、蛋白质代谢中起传递酰基的作用,是酰化酶的辅酶。 6.生物素:是羧化酶的辅基,在体内参与CO2的固定和羧化反应。 7. FH4:由叶酸衍生而来。四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。 8. Vit B12衍生物:Vit B12分子中含金属元素钴,故又称为钴胺素。Vit B12在体内有多种活性形式,如5-脱氧腺苷钴胺素、甲基钴胺素等。其中,5-脱氧腺苷钴胺素参与构成变位酶的辅酶,甲基钴胺素则是甲基转移酶

5、的辅酶。 四、金属离子的作用: 1. 稳定构象:稳定酶蛋白催化活性所必需的分子构象; 2. 构成酶的活性中心:作为酶的活性中心的组成成分,参与构成酶的活性中心; 3. 连接作用:作为桥梁,将底物分子与酶蛋白螯合起来。 五、酶的活性中心: 酶分子上具有一定空间构象的部位,该部位化学基团集中,直接参与将底物转变为产物的反应过程,这一部位就称为酶的活性中心。 参与构成酶的活性中心的化学基团,有些是与底物相结合的,称为结合基团,有些是催化底物反应转变成产物的,称为催化基团,这两类基团统称为活性中心内必需基团。在酶的活性中心以外,也存在一些化学基团,主要与维系酶的空间构象有关,称为酶活性中心外必需基团。

6、 六、酶促反应的特点: 1具有极高的催化效率:酶的催化效率可比一般催化剂高1061020倍。酶能与底物形成ES中间复合物,从而改变化学反应的进程,使反应所需活化能阈大大降低,活化分子的数目大大增加,从而加速反应进行。 2具有高度的底物特异性:一种酶只作用于一种或一类化合物,以促进一定的化学变化,生成一定的产物,这种现象称为酶作用的特异性。 绝对特异性:一种酶只能作用于一种化合物,以催化一种化学反应,称为绝对特异性,如琥珀酸脱氢酶。 相对特异性:一种酶只能作用于一类化合物或一种化学键,催化一类化学反应,称为相对特异性,如脂肪酶。 立体异构特异性:一种酶只能作用于一种立体异构体,或只能生成一种立体

7、异构体,称为立体异构特异性,如L-精氨酸酶。 3酶的催化活性是可以调节的:如代谢物可调节酶的催化活性,对酶分子的共价修饰可改变酶的催化活性,也可通过改变酶蛋白的合成来改变其催化活性。 七、酶促反应的机制: 1中间复合物学说与诱导契合学说:酶催化时,酶活性中心首先与底物结合生成一种酶-底物复合物(ES),此复合物再分解释放出酶,并生成产物,即为中间复合物学说。当底物与酶接近时,底物分子可以诱导酶活性中心的构象以生改变,使之成为能与底物分子密切结合的构象,这就是诱导契合学说。 2与酶的高效率催化有关的因素:趋近效应与定向作用;张力作用;酸碱催化作用;共价催化作用;酶活性中心的低介电区(表面效应)。

8、 八、酶促反应动力学: 酶反应动力学主要研究酶催化的反应速度以及影响反应速度的各种因素。在探讨各种因素对酶促反应速度的影响时,通常测定其初始速度来代表酶促反应速度,即底物转化量5%时的反应速度。 1底物浓度对反应速度的影响: 底物对酶促反应的饱和现象:由实验观察到,在酶浓度不变时,不同的底物浓度与反应速度的关系为一矩形双曲线,即当底物浓度较低时,反应速度的增加与底物浓度的增加成正比(一级反应);此后,随底物浓度的增加,反应速度的增加量逐渐减少(混合级反应);最后,当底物浓度增加到一定量时,反应速度达到一最大值,不再随底物浓度的增加而增加(零级反应)。 米氏方程及米氏 常数 :根据上述实验结果,

9、Michaelis & Menten 于1913年推导出了上述矩形双曲线的数学表达式,即米氏方程:= VmaxS/(Km+S)。其中,Vmax为最大反应速度,Km为米氏 常数 。 Km和Vmax的意义: 当=Vmax/2时,Km=S。因此,Km等于酶促反应速度达最大值一半时的底物浓度。 当k-1k+2时,Km=k-1/k+1=Ks。因此,Km可以反映酶与底物亲和力的大小,即Km值越小,则酶与底物的亲和力越大;反之,则越小。 Km 可用于判断反应级数:当S0.01Km时,=(Vmax/Km)S,反应为一级反应,即反应速度与底物浓度成正比;当S 100Km时,=Vmax,反应为零级反应,即反应速度

10、与底物浓度无关;当0.01KmS100Km时,反应处于零级反应和一级反应之间,为混合级反应。 Km是酶的 特征 性 常数 :在一定条件下,某种酶的Km值是恒定的,因而可以通过测定不同酶(特别是一组同工酶)的Km值,来判断是否为不同的酶。 Km可用来判断酶的最适底物:当酶有几种不同的底物存在时,Km值最小者,为该酶的最适底物。 Km可用来确定酶活性测定时所需的底物浓度:当S=10Km时,=91%Vmax,为最合适的测定酶活性所需的底物浓度。 Vmax可用于酶的转换数的计算:当酶的总浓度和最大速度已知时,可计算出酶的转换数,即单位时间内每个酶分子催化底物转变为产物的分子数。 Km和Vmax的测定:

11、主要采用Lineweaver-Burk双倒数作图法和Hanes作图法。 2酶浓度对反应速度的影响:当反应系统中底物的浓度足够大时,酶促反应速度与酶浓度成正比,即=kE。 3温度对反应速度的影响:一般来说,酶促反应速度随温度的增高而加快,但当温度增加达到某一点后,由于酶蛋白的热变性作用,反应速度迅速下降。酶促反应速度随温度升高而达到一最大值时的温度就称为酶的最适温度。酶的最适温度与实验条件有关,因而它不是酶的 特征 性 常数 。低温时由于活化分子数目减少,反应速度降低,但温度升高后,酶活性又可恢复。 4pH对反应速度的影响:观察pH对酶促反应速度的影响,通常为一钟形曲线,即pH过高或过低均可导致酶催化活性的下降。酶催化活性最高时溶液的pH值就称为酶的最适pH。人体内大多数酶的最适pH在6.58.0之间。酶的最适pH不是酶的 特征 性 常数 。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报