,一、相似矩阵与相似变换的概念,1. 等价关系,二、相似矩阵与相似变换的性质,证明,推论 若 阶方阵A与对角阵,利用对角矩阵计算矩阵多项式,利用上 述结论可以 很方便地计 算矩阵A 的 多项式 .,定理,证明,证明,三、利用相似变换将方阵对角化,命题得证.,说明,如果 的特征方程有重根,此时不一定有个线性无关的特征向量,从而矩阵 不一定能 对角化,但如果能找到 个线性无关的特征向量,还是能对角化,例1 判断下列实矩阵能否化为对角阵?,解,解之得基础解系,求得基础解系,解之得基础解系,故 不能化为对角矩阵.,解,解之得基础解系,所以 可对角化.,注意,即矩阵 的列向量和对角矩阵中特征值的位置 要相互对应,四、小结,相似矩阵相似是矩阵之间的一种关系,它具有很多良好 的性质,除了课堂内介绍的以外,还有:,相似变换与相似变换矩阵,这种变换的重要意义在于简化对矩阵的各种 运算,其方法是先通过相似变换,将矩阵变成与 之等价的对角矩阵,再对对角矩阵进行运算,从 而将比较复杂的矩阵的运算转化为比较简单的对 角矩阵的运算,相似变换是对方阵进行的一种运算,它把A 变成 ,而可逆矩阵 称为进行这一变换的 相似变换矩阵,思考题,思考题解答,