,一、惯性定理,一个实二次型,既可以通过正交变换化为标 准形,也可以通过拉格朗日配方法化为标准形, 显然,其标准形一般来说是不唯一的,但标准形 中所含有的项数是确定的,项数等于二次型的秩,下面我们限定所用的变换为实变换,来研究 二次型的标准形所具有的性质,为正定二次型,为负定二次型,二、正(负)定二次型的概念,例如,证明,充分性,故,三、正(负)定二次型的判别,必要性,故,推论 对称矩阵 为正定的充分必要条件是: 的特征值全为正,这个定理称为霍尔维茨定理,定理3 对称矩阵 为正定的充分必要条件是: 的各阶主子式为正,即,对称矩阵 为负定的充分必要条件是:奇数阶主 子式为负,而偶数阶主子式为正,即,正定矩阵具有以下一些简单性质,解,它的顺序主子式,故上述二次型是正定的.,解,二次型的矩阵为,用特征值判别法.,故此二次型为正定二次型.,即知 是正定矩阵,,解,2. 正定二次型(正定矩阵)的判别方法:,(1)定义法;,(2)顺次主子式判别法;,(3)特征值判别法.,四、小结,1. 正定二次型的概念,正定二次型与正定 矩阵的区别与联系,3. 根据正定二次型的判别方法,可以得到 负定二次型(负定矩阵)相应的判别方法,请大 家自己推导,思考题,思考题解答,