收藏 分享(赏)

竞赛第一章 细胞生物学(修).doc

上传人:fmgc7290 文档编号:7221903 上传时间:2019-05-10 格式:DOC 页数:31 大小:1.08MB
下载 相关 举报
竞赛第一章  细胞生物学(修).doc_第1页
第1页 / 共31页
竞赛第一章  细胞生物学(修).doc_第2页
第2页 / 共31页
竞赛第一章  细胞生物学(修).doc_第3页
第3页 / 共31页
竞赛第一章  细胞生物学(修).doc_第4页
第4页 / 共31页
竞赛第一章  细胞生物学(修).doc_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、 高中生物竞赛辅导资料:第一章 细胞生物学细胞生物学是研究细胞的结构、功能、生活史以及生命活动本质和规律的科学,是生物科学的主要分支之一,也是生命科学和分子生物学研究的基础。本章包括细胞的化学成分,细胞器,细胞代谢,DNA、RNA 和蛋白质的生物合成,物质通过膜的运输,有丝分裂和减数分裂,微生物学和生物技术等部分。根据 1BO 考纲细目和近几年来试题的要求,以下从知识条目和能力要求两方面定出具体目标第一节 细胞的化学成分尽管自然界细胞形态多样,功能各异,但其化学成分基本相似,主要包括:糖类、脂类、蛋白质、核酸、酶类等。一、糖类糖类是多羟基醛、多羟基酮的总称,一般可用 Cm(H20)n 化学通式

2、表示。由于一些糖分子中氢和氧原子数之比往往是 2:1,与水结构相似,故又把糖类称为碳水化合物。糖是生命活动的主要能源,又是重要的中间代谢物,还有些糖是构成生物大分子,如核酸和糖蛋白的成分,因而具有重要意义。糖类化合物按其组成可分为单糖、寡糖、多糖。如果糖类化合物中尚含有非糖物质部分,则称为糖复合物,例如糖蛋白、蛋白多糖、糖脂和脂多糖等。(一) 单糖单糖是最简单的糖,不能被水解为更小的单位。单糖通常含有 37 个碳原子,分别称为丙糖、丁糖、戊糖、己糖和庚糖。天然存在的单糖一般都是 D-构型。单糖分子既可以开链形式存在,也可以环式结构形式存在。在环式结构中如果第一位碳原子上的羟基与第二位碳原子的羟

3、基在环的伺一面,称为 -型;如果羟基是在环的两面,称 - 型。重要的单糖有以下几种:1丙糖 如甘油醛(醛糖 )和二羟丙酮(酮糖) 。它们的磷酸酯是细胞呼吸和光合作用中重要的中间代谢物。 2戊糖 戊糖中最重要的有核糖( 醛糖)、脱氧核糖(醛糖)和核酮糖(酮糖) 。核糖和脱氧核糖是核酸的重要成分,核酮糖是重要的中间代谢物。3己糖 葡萄糖、果糖和半乳糖等都是己糖。所有己糖的分子式为 C6H1206,但结构式不同,互为同分异构体。葡萄糖是植物光合作用的产物,也是细胞的重要能源物质之一。(二) 寡糖由少数几个(26 个)单糖缩合而成的糖称为寡糖。最多的寡糖是双糖,如麦芽糖、蔗糖、纤维二糖、乳糖。1麦芽糖

4、 麦芽糖是由一个 D-葡萄糖半缩醛羟基与另一分子 -D-葡萄糖 C4 上的醇羟基缩合脱去一分子水,通过 -1,4- 糖苷键结合而成。麦芽糖是淀粉的基本单位,淀粉水解即产生麦芽糖,所以麦芽糖通常只存在于淀粉水解的组织,如麦芽中。2蔗糖 一分子 -D 葡萄糖和一分子 -D- 果糖缩合脱水即成蔗糖。甘蔗、甜菜、胡萝卜以及香蕉、菠萝等水果中都富含蔗糖。3.乳糖 乳糖由一分子 -D- 半乳糖和一分子 -D-葡萄糖通过 -1,4- 糖苷键结合而成。乳糖主要存在于哺乳动物乳汁中。 4纤维二糖 纤维二糖是纤维素的基本结构单位,由 2 分子的 p-D-葡萄糖通过 -1,4-糖苷键结合而成。(三) 多糖自然界数量

5、最大的糖类是多糖。多糖是由很多单糖分子缩合脱水而成的分支或不分支的长链分子。常见的多糖有:淀粉、纤维素、糖原、几丁质和黏多糖等。1淀粉 天然淀粉由直链淀粉与支链淀粉组成。直链淀粉是 -D-葡萄糖基以 -1,4-糖苷键连接的多糖链。支链淀粉分子中除有 1,4- 糖苷键的糖链外,还有 -1,6-糖苷键连接的分支。淀粉与碘有呈色反应,直链淀粉为蓝色,支链淀粉为紫红色。在稀酸或酶的作用下,淀粉水解:淀粉糊精麦芽糖-D葡萄糖。糊精是淀粉水解的最初产物,随着水解,糖分子逐渐变小,它与碘作用分别呈红色、黄色、无色。这个反应可用于淀粉水解过程的检验。2糖原 糖原是动物组织中贮存的多糖,又称动物淀粉。糖原也是

6、-D-葡萄糖基以-1,4-糖苷键连接而成的,但糖原的分支比支链淀粉多。糖原遇碘作用呈红褐色。3纤维素,纤维素是一种线性的由 -D-葡萄糖基以 -1,4-糖苷键连接的没有分支的同多糖。纤维素是植物细胞壁的主要组成成分。4几丁质(甲壳素) 昆虫和甲壳类外骨骼的主要成分为几丁质,是 N-乙酰D-氨基葡萄糖以 -1,4-糖苷键缩合成的同多糖。二、脂类 脂类是生物体内一类重要的有机化合物。它们有一个共同的物理性质,就是不溶于水,但能溶于非极性有机溶剂(如氯仿、乙醚、丙酮等 )。脂类的组成元素主要有 C、H 、0,但0 元素含量低,C、H 元素含量高,彻底氧化后可以放出更多能量。此外,有的脂类还含有P 和

7、 N。生物体内常见的具有重要生理功能的脂类主要有三酰甘油、磷脂、类固醇、萜类、蜡等。1三酰甘油 三酰甘油也称脂肪,是由 1 分子甘油和 3 分子脂肪酸结合而成的酯。右边结构式中 Rl、R2、凡是脂肪酸的烃基链,构成三酰甘油的脂肪酸可分为饱和脂肪酸和不饱和脂肪酸。饱和脂肪酸碳氢链上没有双键,如软脂酸、硬脂酸,其熔点高。不饱和脂肪酸的碳氢链上含有不饱和双键,如油酸含 1 个双键,亚油酸含 2 个双键,亚麻酸含 3 个双键,因此熔点较低。动物脂肪大多富含饱和脂肪酸,在室温下为固态,植物油含大量油酸和亚油酸,在室温下为液态。对于哺乳动物和人,亚油酸和亚麻酸不能自己合成,只能从外界摄取,称为必需脂肪酸。

8、2磷脂磷脂又称甘油磷脂,此类化合物是甘油的第三个羟基被磷酸所酯化,而其他两个羟基被脂肪酸酯化。磷脂酸是最简单的磷脂,是其他复杂磷脂的中间产物。若磷脂酸分子中的H 为胆碱、胆胺、丝氨酸所取代,则分别成为卵磷脂、脑磷脂、丝氨酸磷脂等。磷脂分子由于有磷酸及与之相连的含氮化合物,因而是有极性的分子:它的有磷酸一端为极性的头,是亲水的,它的 2 个脂肪酸链为非极性的尾,是疏水的。如将磷脂放在水面上,磷脂分子都将以亲水的头和水面相接,而倒立在水面上,成一单分子层。如将磷脂放入水中,磷脂分子则会形成单分子微团,各分子的极性头位于微团的表面而与水接触,非极性的疏水端则藏在微团中心。3类固醇类固醇分子的基本结构

9、是环戊烷多氢菲。最熟知的类固醇是在环戊烷多氢菲上连有一个碳氢链的胆固醇。胆固醇是动物膜和神经髓鞘的主要成分,与膜的透性有关。性激素、维生素 D 和肾上腺皮质激素都属于类固醇。 4萜类萜类是由不同数目的异戊二烯连接而成的分子。维生素 A(视黄醇)、维生素 E、维生素 K、类胡萝卜素都是萜类。-类胡萝卜素裂解就成 2 个维生素A,维生素 A 可氧化成视黄醛,对动物感光活动有重要作用。5蜡蜡是由高碳脂肪酸和高碳醇或固醇所形成的脂,它存在于皮肤、毛皮、羽毛、树叶、昆虫外骨骼中,起保护作用。三、蛋白质蛋白质是细胞和生物体的重要组成成分,通常占细胞干重的一半以上。蛋白质主要由 C、H、0、N 四种元素组成

10、,其中氮的含量在各种蛋白质中比较接近,平均为 16,因此用凯氏(KJelahl)法定氮测定蛋白质含量时,受检物质中含蛋白质量为氮含量的 625 倍。蛋白质是高分子化合物,其基本组成单位是氨基酸。(一 )氨基酸1氨基酸的结构天然存在于蛋白质中的氨基酸共有 20 种,各种氨基酸(除脯氨酸 )在结构上的一个共同特点是,在与羧基相连的碳原子(-碳原子)上都有一个氨基,因而称为 -氨基酸,它们的不同之处在于侧链,即 R 基的不同。除甘氨酸外,所有氨基酸分子中的 -碳原子都是不对称的,有 L-型和 D-型之分。在天然蛋白质中存在的氨基酸都是 L-氨基酸。2氨基酸的分类根据 R 基团极性不同,氨基酸可分为:

11、非极性氨基酸(9 种);极性不带电荷氨基酸(6种);极性带负电荷氨基酸(2 种);极性带正电荷氨基酸(3 种) 。如表 1-1-1 所示。根据成年人的营养需求,20 种氨基酸又可分为必需氨基酸和非必需氨基酸。必需氨基酸足指成年人体内不能合成而必须山食物提供的一类氨基酸,包括亮氨酸、异亮氨酸、缬氨酸、另;氨酸、蛋氨酸、色氨酸、赖氨酸、苯丙氨酸等 8 种。精氨酸和组氨酸,在幼儿时期体内合成量满足不了生长需要,需食物补充,称为半必需氨基酸。3氨基酸的主要理化性质(1)一般的物理性质 -氨基酸呈无色结晶,在水中溶解度各不相同,易溶于酸、碱,但不溶于有机溶剂、(2)两性解离和等电点 - 氨基酸在中性水溶

12、液中或固体状态下主要是以两性离子的形式存在,即在同一个氨基酸分子上带有能放出质子的-NH3+ 正离子和能接受质子的一 C00-负离子。因此,氨基酸是两性电解质。当两性离子氨基酸溶解于水时,其正负离子都能解离,但解离度与溶液的 pH 值有关。向氨基酸溶液加酸时,其两性离子的-COO- 负离子接受质子,自身成为正离子,在电场中向阴极移动 加入碱时,其两性离子的一 NH3+正离子解离放出质子(与一 OH-合成水),其自身成为负离子,在电场中向阳极移动。当凋节氨基酸溶液的 pH 值,使氨基酸分子上的一 NH3+和一 C00-的解离度完全相等时,即氨基酸所带净电荷为零,在电场中既不向阳极移动也不向阴极移

13、动,此时氨基酸所处溶液的 pH 值称为该氨基酸的等电点,以符号 pI 表示。在等电点时,氨基酸的溶解度最小,容易沉淀,利用这一性质可以分离制备各种氨基酸。(3)紫外吸收光谱 各种氨基酸在可见光区都没有光吸收,在远紫外区均有光吸收,而在近紫外光区仅色氨酸、酪氨酸、苯丙氨酸有吸收能力。其中色氨酸最大吸收波长为 279nm,酪氨酸最大吸收波长 278nm,苯丙氨酸最大吸收波长为 259nm。利用紫外光法可以测定这些氨基酸的含量。(4)重要的化学反应 氨基酸不但 -氨基、 -羧基能参加反应,而且有的侧链 R 基团也能参加化学反应,因此可以发生的反应很多。如: -氨基能与茚三酮反应产生蓝紫色沉淀(脯氨酸

14、和羟脯氨酸则产生黄色沉淀);-氨基可与亚硝酸反应产生氮气,在标准条件下测定氮气体积,即可计算出氨基酸的量;一些氨基酸的 R 基团能与特殊的试剂发生呈色反应。(二 )蛋白质的结构已确认的蛋白质结构有不同层次,人们为了认识的方便通常将其分为一级结构、二级结构,超二级结构、结构域、三级结构及四级结构。l,一级结构蛋白质的一级结构又称为初级结构或化学结构,是指蛋白质分子内氨基酸的排列顺序。蛋白质分子中氨基酸主要通过肽键相互连接。肽键是由一个氨基酸分子中的 -氨基与相邻另一个氨基酸分子中的 -羧基,通过缩水而成,这样连起来的氨基酸聚合物叫做肽。多肽链上各个氨基酸由于在相互连接过程中丢失了 -氨基上的 H

15、 和 -羧基上的 OH,被称为氨基酸残 基。在多肽链的一端氨基酸含有一个未反应的游离氨基(一 NH2),称为肽链的氨基末端氨基酸或 N 末端氨基酸,另一端的氨基酸含有一个尚未反应的游离羧基(一 COOH),称为肽链的羧基末端氨基酸或C 末端氨基酸。一般表示多肽时,总是 N 末端:写在左边,C 末端写在右边。肽链中除肽键外还有二硫键,它是由肽链中相应部位上两个半胱氨酸脱氢连接而成,是肽链内和肽链间的主要桥键。2,二级结构二级结构是指多肽链本身绕曲折叠成的有规律的结构或构象。这种结构是以肽链内或肽链间的氢键来维持的。常见的二级结构有 -螺旋、- 折叠、-转角、自由绕曲等四种。(1)-螺旋 -螺旋模

16、型是 Pauling 和 Corey 等研究羊毛、马鬃,猪毛、鸟毛等 -角蛋白时提出的。如图 l-1-1 所示,其特征是:多肽链中氨基酸残基以 100的角度围绕螺旋轴心盘旋上升,每 36 个残基就旋转一圈,螺距为 054nm,即每个残、基沿螺旋体中心轴上、升 015nm;右手旋转;多肽链内的氢键由肽链中一个肽键的一 CO 的氧原子与第四个肽键的一 NH 的氢原子组成,每个氢键所形成的环内共有 13 个原子,这种螺旋称为 3613.一条多肽链能否形成 -螺旋以及形成的螺旋体的稳定程度与 R 基团大小、带电状况等有关。如多聚赖氨酸在 pH 70 时,R 基团带正电相互排斥,破坏螺旋形成,而在 pH

17、 12 时则能自发形成-螺旋。又如肽链内相邻残基是异亮氨酸、缬氨酸、亮氨酸等时,由于 R 基团较大,会阻碍 -螺旋形成。多聚脯氨酸则由于肽键上不具有亚氨基氢,无法形成氢键,因此多肽链中只要有脯氨酸残基,-螺旋即被中断,使多肽主链产生一个“结节”。(2)-折叠 分两种类型,一是平行式,即所有肽链 N 端都在同一端,另一类是反平行式,即肽链的 N 端一顺一反地排列。 -折叠结构的肽链几乎是完全伸展的,邻近两链以相反或相同方向平行排列成片层状。两个氨基酸残基之间的轴心距离为 035nm,-折叠结构的氢键是由两条肽链中一条的一 C0基与另一条的一 NH 基形成。丝蛋白的二级结构主要是 -折叠。如图 1

18、-1-2 所示。(3)-转角 蛋白质分子的多肽链上经常出现 180的回折,在这种肽链的回折角上就是 -转角结构,由第一个氨基酸残基的一 CO 与第四个氨基酸残基的一 NH 形成氢键。(4)自由绕曲 是指没有一定规律的松散结构,酶的功能部位常常处于这种构象区域中。3超二级结构与结构域 近年在研究蛋白质构象、功能与进化时,引进了超二级结构和结构域(图 1-1-3)的结构层次。它们是二级结构与三级结构的过渡型构象。超二级结构是指若干相邻的二级结构中的构象单元彼此相互作用,形成有规则的、在空间上能辨认的二级结构组合体。通常有、 等。如肌球蛋白、原肌球蛋白和纤维蛋白原中有一种 超二级结构,是由两股或三股

19、右手 -螺旋彼此缠绕而成的左手螺旋构象。结构域是指多肽链在超二级结构基础上进一步绕曲折叠成紧密的球状结构,在空伺上彼此分隔的各自具有部分生物功能的亚结构。一般情况下,酶的活性部位位于两个结构域之间的裂缝中。4.三级结构纤维状蛋白质一般只有二级结构,而球状,蛋白质在二级结构的基础上,经过超二级结构和结构域,进一步组装成三级结构(图 1-1-4)。维持三级结构的作用力主要是一些次级键,包括氢键、盐键、疏水键和范德华力等。其中疏水键在维持蛋白质的三级结构上有突出作用。5.四级结构四级结构(图 1-l-5)是指蛋白质分子内具有三级结构的亚单位通过氢键、盐键、疏水键 和范德华力等弱作用力聚合而成的特定构

20、象。所谓亚单位,又称亚基,是指那些在化学上相 互独立但自身又具有特定构象的共同构成同一蛋白质的肽链。如血红蛋白有四个不同的亚 基,这 4 个亚基以一定形式结合在一起,形成特定的构象,即是四级结构。(三) 蛋白质的理化性质1胶体性质 蛋白质相对分子质量很大,在水溶液中所形成的颗粒具有胶体溶液的特 征,如布朗运动、丁达尔现象、不能通过半透膜等。溶液中,蛋白质胶体颗粒带有相同电荷, 彼此排斥;而且颗粒表面极性分子能与水分子形成一层水膜,将蛋白质颗粒相互隔开,因此蛋白质颗粒比较稳定,不易沉淀。2,两性电解质 蛋白质分子除了肽链两端有自由的 -氨基和 - 羧基外,许多氨基酸残基的侧链上存有不少可解离的基

21、团,所以蛋白质是两性电解质。在酸性溶液中蛋白质带正电,在碱性淀液中蛋白质带负电。当溶液达到某一 pH 值时,蛋白质所带正负电荷相等,这时溶液的 pH 值叫做蛋白质的等电点 (pI)。一般含酸性氨基酸较多的蛋白质,等电点偏酸;含碱性氨基酸较多的蛋白质,等电点偏碱。可以根据不同的蛋白质的等电点,用电泳法分离蛋白质。3沉淀反应 如果在蛋白质溶液小加入适当试剂,破坏了蛋白质的水膜或中和蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象.可引起沉淀反应的试剂有高浓度盐类(如硫酸铵、硫酸钠、氯化钠等,称为盐析) ,有机溶剂(如酒精、丙酮),重金属盐( 如硝酸银、醋酸铅、三氯化铁等),某些生物碱试剂 (如

22、苦味酸、单宁酸等 ).4变性 蛋白质因受物理或化学因素的影响,其分子的空间结构改变,导致其理化性质、生物活性都发生改变,这种现象称为蛋白质的变性。能使蛋白质变性的化学因素有强酸、强碱、重金属离子、尿素、酒精、丙酮等;能使蛋白质变性的物理因素有加热震荡或搅拌、超声波、紫外线及 X 射线照射等。蛋白质生物活性的丧失是蛋白质变性的主要特征,变性后的蛋白质最明显的理化性质改变是溶解度降低。变性过程中不发生肽键断裂和二硫键的破坏,因而不发生一级结构的破坏;而主要发生氢键、疏水键的破坏,使肽链的有序的卷曲、折叠状态变为松散无序。5紫外吸收 蛋白质在 280nm 的紫外光下,有最大吸收峰。这主要是由于肽链中

23、酪氨酸和色氨酸的 R 基团引起的。因此可以用紫外线分光光度法测定蛋白质在 280nm 的光吸收值来测定蛋白质的含量。6变构作用 含 2 个以上亚基的蛋白质分子,如果其中一个亚基与小分子物质结合,那么不但该亚基的构象发生改变,而且其他亚基的构象受影响也发生变化,结果整个蛋白质分子的构象乃至活性均会改变,这一现象称为变构作用(或别构作用) 。例如,血红蛋白有 4 个亚基,当 02 与其中一个亚基结合后,即引起该亚基的构象的改变,进而又会引起另外三个亚基构象发生变化,结果整个分子构象改变,使所有亚基更易于与氧结合,大大加快血红蛋白与氧结合的速度。7呈色反应 蛋白质分子中因含有某些特殊的结构或某些特殊

24、氨基酸残基,能与多种化合物发生颜色反应。重要的颜色反应如表 l-1-2 所示。(四)蛋白质的分类 1蛋白质的化学分类 根据蛋白质的分子组成可将蛋白质分为简单蛋白质和结合蛋白质两大类。简单蛋白质完全水解的产物为 -氨基酸,即只由 - 氨基酸组成。因此,简单蛋白,质又称单纯蛋白质,如球蛋白、白蛋白、组蛋白等。结合蛋白质由简单蛋白质和非蛋白质物质两部分组成。非蛋白质部分通常称为辅基。辅基可以是核酸、糖类、脂类、色素、磷酸,由此组成的结合蛋白质分别称为核蛋白、糖蛋白、脂蛋白、色蛋白、磷蛋白。2蛋白质的功能分类 根据蛋白质的功能大体分为结构蛋白和酶两大类,结构蛋白参与细胞结构的组成。酶是活细胞产生的具极

25、高催化效率的一类蛋白质,生物体内的绝大多数化学反应都需要在酶的催化作用下才能进行。四、酶类 酶是由活细胞产生的,能在体内或体外起同样催化作用的一类具有活性中心和特殊构象的生物大分子,包括蛋白质和核酸。生物体和细胞内错综复杂的彳弋谢反应必须具有酶才能按一定规律有条不紊地进行。酶缺陷或者酶活性被抑制会引起生物体和细胞的病变。在这里主要讨论蛋白质属性的酶。(一 )酶的化学结构 绝大多数的酶是蛋白质,根据酶的化学组成可以把酶分成单纯酶和结合酶,单纯酶分子完全由蛋白质组成,不含其他成分。结合酶分子由简单的蛋白质(称为酶蛋白) 和辅助因子两部分组成,辅助因子可以是金属离子或小分子有机物。通常把这些小分子有

26、机物称为辅酶或辅基。辅酶指与酶蛋白结合比较松,用透析法可以除去的小分子有机物;而辅基则指与酶蛋白结合比较紧,用透析法不易除去的小分子有机物;两者没有本质区别。酶的催化反应的专一性和高效性主要决定于酶蛋白。酶分子中有很多化学基团,但并不是所有的基团都与酶的活性有关。酶的活性仅与一部分基团有直接关系,这些基团称为酶的必需基团。如果对这些基团进行取代或修饰,则酶的活性丧失。酶的必需基团在一级结构上可能相距很远,甚至可能不在一条肽链上,但由于肽链盘绕折叠使它们在空间上彼此靠近,形成具有一定空间结构的区域,而直接与酶的催化功能有关,这种区域称为酶的活性中心。酶活性中心包括两个功能部位:一个是结合部位,一

27、定的底物靠此部位结合到酶分子上;一个是催化部位,底物分子中的化学键在此处被打断或形成新的化学键,从而发生一定的化学反应。 (二 )酶的作用机制1酶的催化作用降低活化能在一个反应体系中,任何反应物分子都有进行化学反应的可能,但并非全部反应物分子都进行反应。因为在反应体系中各反应物分子所含的能量高低不同,只有那些所含能量达到或超过一定限度(称为能阈)的活化分子(处于过渡态的分子) 才能在碰撞中发生化学反应。显然,活化分子越多,反应速度越快。将分子由常态转变到活化状态(过渡态)所需的能量,称为活化能。酶的催化作用就是降低化学反应的活化能,由于在酶催化反应中只需较低的能量就可使反应物进入“过渡态”,所

28、以同非酶催化反应相比,活化分子的数量大大增加,从而加快反应的速度。如图 1-1-6 所示。2中间产物学说 酶为什么能降低反应的活化能?中间产物学说能比较好地解释这个问题。该学说认为:在催化某一反应的时候,酶首先与底物形成不稳定的中间产物,然后中间产物再分解,释放出酶及产生的反应产物。可用公式表示为:这样,把原来无酶参加的一步反应 分成了两步进行。这两步反应所需要的活化能比原来一步反应的低,从而加快反应速度。显然,酶之所以降低反应活化能是由于酶与底物生成了中间产物从而改变了反应途径所致。 3“钥匙-锁”学说和“ 诱导契合”学说 酶和底物是如何结合成中间产物的?又如何完成其催化作用?1890 年。

29、E.Fischer 提出“钥匙-锁”学说,认为酶和底物结合时,底物的结构必须和酶活性部位的结构非常吻合,就像锁和钥匙一样,这样才能紧密结合形成中间产物。这在一定程度上解释了酶促反应的特性,如专一性;但该学说把酶的结构看成是固定不变的,这是不切实际的,并且该模型不能解释可逆反应。 1958 年, DEKoshland 提出了“ 诱导契合”学说,克服了“钥匙-锁”模型的缺点,认为酶与底物结合时,底物能诱导酶分子的构象变化,使酶能与分子很好地结合,从而发生催化作用。如图 1-1-7 所示。4使酶具有高催化效率的因素酶为什么比一般催化剂具有更高催化效率?主要有以下因素:(1)邻近定向效应 指底物和酶活

30、性部位的邻近,对于双分子反应来说也包含酶活性部位上底物分子之间的靠近,而互相靠近的底物分子之间,以及底物分子与酶活性部位的基团之间还要有严格的定向(正确的立体化学排列 )。这样就大大提高了活性部位上底物的有效浓度,使分子间反应近似于分子内的反应,同时还为分子轨道交叉提供了有利条件;使底物进行反应的活化能降低,从而大大地增加了酶-底物中间产物进入过渡态的几率。(2)“张力 ”和”形变” 底物结合可以诱导酶分子构象的变化,而变化的酶分子又使底物分子的敏感键产生“张力”甚至“形变”,从而促进酶-底物中,间产物进入过渡态。(3)酸碱催化 酶活性部位上的某些基团可以作为良好的质子供体或受体对底物进行酸碱

31、催化。(4) 共价催化 某些酶可以和底物生成不稳定的共价中间物,这种共价中间物进一步生成产物要比非催化反应容易得多。(三 )影响酶催化反应的因素1.酶浓度的影响 在酶促反应中,如果底物浓度大到足以使酶饱和,则反应速度与酶浓度成正比(图 1-1-8):V=k E。2底物浓度的影响(1)底物浓度对酶促反应速度的影响在酶浓度等条件恒定,反应系统中没有不利于酶发挥作用的因素存在时,用反应速度对底物浓度作图得一直角双曲线(图 1-1-9)。由曲线可以看出:当底物浓度S较低时,反应速度和底物浓度几乎成正比。当底物浓度较高时,反应速度也随浓度的增加而升高,但不显著。当浓度大大增加时,反应速度趋近一个最大值即

32、最大速度 Vmax,此时的反应速度与底物浓度无关。3.PH 值的影响酶常常限于某一 pH 值范围内才表现出最大的活力,这种表现出酶的最大活力的 pH 值就是酶的最适 pH 值。当 pH 高于或低于这个最适值时,酶活性就会降低。通常典型的最适pH 曲线为钟型曲线 (图 1-1-10)。pH 值对酶活性影响的原因,除了由于过酸或过碱使酶变性失活外,主要是由于影响了酶分子活性中心上有关基团的解离或底物的解离,这样就影响了酶与底物的结合,从而影响了酶的活力。4,温度的影响各种酶在一定条件下都有一个最适温度,在最适温度两侧,反应速度都较低,呈钟罩形曲线(图 1-l-11)。温度对酶促反应的影响有两个方面

33、:一方面是温度升高,反应速度加快,与一般化学反应相似;另一方面,随着温度升高,酶蛋白变性也随之增加,减少有活性的酶的数量,降低了酶促反应速度。酶促反应最适温度就是两种过程的平衡。在低于最适温度时,前一种效应为主,在高于最适温度时,后一种效应为主。5,激活剂的影响能提高酶活性的物质称为激活剂。按分子大小可分为 3 类:第一类为无机离子,如 Mg2+是各种激酶的激活剂,C1-能激活唾液 -淀粉酶;第二类为中等大小的有机化合物,一种是还原剂,如半胱氨酸、还原型谷胱甘肽等,另一种是金属螯合剂,能除去酶中重金属杂质,从而解除重金属对酶的抑制,如乙二氨四乙酸(EDTA);第三类为蛋白质性的大分子化合物,这

34、类激活剂用于酶原激活,使无活性酶原变成有活性的酶。6抑制剂的影响某些物质,不引起酶蛋白变性,但能使酶分子上某些必需基团发生变化,因而引起酶活性下降,甚至丧失。这种作用称为抑制作用,起抑制作用的物质称为抑制剂。酶的抑制作用分为不可逆抑制作用和可逆抑制作用两类。(四 )酶的分类和命名1酶的国际系统分类法国际生物化学联合会酶学委员会提出的酶的国际系统分类法的分类原则是:将所有已知酶按其催化的反应类型分为六大类,即氧化还原酶类、转移酶类、水解酶类、裂解酶类、异构酶类、合成酶类,分别用 1,2,3,4,56 的编号来表示;根据底物分子中被作用的基团或键的性质,再将每一大类分为若干亚类,每一亚类又分为若干

35、亚亚类;然后再把属于这一亚亚类的酶按顺序排好。这样就把已知的酶分门别类地排成一个表,称为酶表。每一种酶在这个表中的位置可用一个统一的编号来表示。每个编号由四个数字组成:如催化乳酸脱氢转变为丙酮酸的乳酸脱氢酶,编号为 ECl1.1.27 。 EC 指国际酶学委员会的缩写;第一个 1,代表该酶属于氧化还原酶类;第二个 1,代表该酶属于氧化还原酶类中的第一亚类,催化醇的氧化;第三个 1,代表该酶属于氧化还原酶类中第一亚类的第一亚亚类;第四个数字表明该酶在一定的亚亚类中的排号。2酶的命名根据国际酶学委员会的建议,每一种酶都给以两个名称。二个是系统名,一个是惯用名。(1)系统命名法 包括两部分,即底物名

36、称及反应类型。若酶反应中有两种底物起反应,则这两种底物均需表明,当中用“:”分开。例如,草酸氧化酶其系统名称为草酸:氧化酶。(2)习惯命名法 通常依据酶作用的底物及反应类型来命名 如催化乳酸脱氢变成丙酮酸的酶称为乳酸脱氢酶 催化草酰乙酸脱去 CO2 变为丙酮酸的酶称草酰乙酸脱羧酶 对于催化水解作用的酶,一般在酶的名,字上省去反应类型,如水解蛋白的酶称蛋白酶,水解淀粉的酶称淀粉酶。有时为了区别同一类酶,还可以在酶的名称前面标上来源。如胃蛋白酶、胰蛋白酶、木瓜蛋白酶等。五、核酸天然的核酸可分为两大类:核糖核酸(RNA)和脱氧核糖核酸(DNA) 。真核细胞中,RNA 主要分布在细胞质内,在细胞核内仅

37、有少量存在,线粒体、叶绿体内也有分布;DNA 主要分布在细胞核内,线粒体、叶绿体内也有少量存在。(一 )核酸的组成成分将核酸水解可以得到核酸的基本组成单位核苷酸,而核苷酸还可以进一步分解成核苷和磷酸。核苷又可进一步分解成碱基和戊糖。1戊糖组成核酸的戊糖有两种:-D-核糖和 -D-2-脱氧核糖。前者存在于RNA,后者存在于 DNA。2碱基碱基分为两类:一类是嘌呤,为双环分子,一般有腺嘌呤(A)、鸟嘌吟(G) 两种;另一类是嘧啶,为单环分子,一般有胞嘧啶(C)、胸腺嘧啶(T)、尿嘧啶(U) 三种。DNA 中含有A、G、C、T,RNA 中含有 A、G、C、U。凡含有酮基的嘧啶碱或膘吟碱,在溶液中可以

38、发生酮式和烯醇式的互变异构现象。结晶状态时,为这种异构体的等量混合物。在生物体内则以酮式占优势,这对核酸分子中氢键结构的形成非常重要。在核酸中还存在少量其他修饰碱基。核酸中的修饰碱基多是 4 种主要碱基的衍生物,大多是甲基化碱基,都是在核酸生物合成后,酶促加工修饰而成。这些修饰碱基对核酸的生物功能具有重要的作用。tRNA 的修饰碱基种类较多,如次黄瞟吟。二氢尿呼唤、4 一硫尿嘧啶、5 一甲基胞嘧啶。3核苷戊糖 Cl的羟基与嘧啶碱 Nl 或瞟吟碱 N9 上的氢缩合连接成共价的 -N- 糖苷键。形成核苷。由核糖组成的核苷为核糖核苷,用单符号(A、G 、C 、U)表示,由脱氧核糖构成的核苷,称脱氧核

39、苷,则在单个符号前加一个小写的 d(dA、dG 、dC 、dT)。在tRNA 中存在少量 5-核糖尿嘧啶,是一种碳苷,其 C1是与尿嘧啶的第 5 个碳原子相连,因为戊糖与碱基连接方式比较特殊也称假尿苷苦用符号 表示。4核苷酸核苷酸是核苷的磷酸酯。核糖核苷酸的核糖有 3 个自由的羟基,因此磷酸酯化分别可生成 2-、3-和 5-核苷酸。脱氧核苷酸的糖上只有两个自由羟基,只能生成 3-和 5-脱氧核苷酸。生物体内的游离核苷酸多为 5-核苷酸。(二) 核酸的结构1.DNA 的结构(1)一级结构构成 DNA 的脱氧核苷酸之间,由前一个残基的脱氧核糖 3-羟基与后一个残基脱氧核糖的 5-磷酸形成:3, 5

40、- 磷酸二酯键,彼此相连而形成多脱氧核苷酸长链 (图 1-1-12)。整个长链有两个游离的末端:脱氧核糖 5-OH 末端(称 5-末端) 和脱氧核糖 3-OH末端(称 3- 末端) ,长链由 5- 末端向 3-末端的延伸(5-末端3-末端) 。DNA 的一级结构就是指脱氧核苷酸链中脱氧核苷酸的排列顺序。不同的 DNA 分子具有不同的一级结构,即含有的脱氧核苷酸数目不同,四种碱基的比例不同,排列顺序也不同。(2)二级结构根据 Chargaff 发现的 A=T、G=C 的碱基组成规律以及 Wilkins 和 Franklin 的 DNA 晶体的 X 光衍射实验数据,1953 年 Watson 和

41、Crick 提出了 DNA 的双螺旋结构模型(如图 1-1-13)。该模型认为:DNA 分子由两条多脱氧核苷酸链反向平行(一条链是 35,另一条链为 5一 3),围绕着同一个轴,右手盘旋成一个右平行螺旋结构,螺旋的直径为20nm;磷酸和脱氧核糖在螺旋体的外侧,通过磷酸二酯键连结形成 DNA 分子的骨架;碱基对位于螺旋体内侧,按 A 与 T,C 与 G 配对,A-T 对有 2 个氢键,C-G 对有 3 个氢键,碱基平面与纵轴垂直,每个碱基对间相隔 034nm ,旋转方向相差 360,因此绕中心轴每旋转一圈有 10 个核苷酸,每隔 34nm 重复出现同一结构;螺旋表面有一条大沟和一条小沟,这两条沟

42、对 DNA 和蛋白质的相互识别是很重要的。DAN 双螺旋结构很稳定,有 3 种化学键维持:互补碱基之间的氢键,碱基对之间的碱基堆集力,以及主链上带负电的磷酸与溶液阳离子之间的离子键,其中碱基堆集力起主要作用。进一步研究发现,在不同湿度条件下,含不同盐离子的 DNA 结晶,其 X 光衍射图谱也不同,说明有不同的双螺旋构象。据此,又可将 DNA 分为 A 型、B 型、C 型、D 型和Z 型等多种构象。(3)三级结构DNA 的三级结构是指双螺旋 DNA 的扭曲或再螺旋、超螺旋是 DNA 三级结构的基本形式。绝大多数原核生物以及线粒体和叶绿体的 DNA 是共价环双链 DNA,这种环状双螺旋DNA 分子

43、,如果通过细胞内拓扑异构酶的作用,即可在环形分子的内部引起张力,这种新产生的张力不能释放到分子外部,而只能在 DNA 分子内部促使原子的位置重排,造成双螺旋的再螺旋,形状似麻花,即产生超螺旋结构。真核细胞染色质和有些病毒 DNA 是双螺旋线形分子,当线形 DNA 分子的两端均固定时也可形成超螺旋结构。染色质 DNA 中双螺旋 DNA 分子先盘绕组蛋白形成核小体,许多核小体由 DNA 链连在一起构成念珠状结构,念珠状结构可进一步盘绕压缩成更高层次的结构-据估汁,人的 DNA 分子在染色质中反复折叠盘绕,共压缩 800010000 倍。2RNA 的结构RNA 主要有三大类,分别是:核糖体 RNA(

44、rRNA),占 RNA 总量的 80以上,是核糖体的主要成分;转运 RNA(1RNA),占总量的 15,在蛋白质的合成中搬运氨基酸;信使 RNA(mRNA),占总量的 5,是合成蛋白质的模板。不同种类的 RNA 结构各不相同,为了表述方便,将 mRNA 作为一级结构的例子,tRNA 作为二级结构、三级结构的例子。(1)一级结构 RNA 分子的基本结构是一条线形的多核苷酸链,由四种核苷酸以 3,5- 磷酸二酯键连接而成。RNA 的一级结构是指 RNA 链上的核苷酸顺序以及各功能部位的排列顺序。mRNA 是以 DNA 为模板转录产生的,一般原核 mRNA 直接转录生成,而真核 mRNA首先形成的是

45、分子大小极不均一的 hnRNA,再经过加工成为成熟的 mRNA。原核 mRNA一般为多顺反子,即一条 mRNA 链含有指导合成几种蛋白质的信息。它的 5-末端和3-末端无特殊结构。在分子内部,一个顺反子的编码区,是从起始密码 AUG开始,到终止密码 UAG 为止,各顺反子的编码区之间,以及 5端第一个顺反子的编码区之前,3端最后一个顺反子编码区之后,都含有一段非编码区。真核 mRNA 一般为单顺反子,一条 RNA 只翻译产生一种多肽链。真核细胞成熟mRNA 分子 3端有 150-200 个腺苷酸(A) 顺序,即多聚腺苷酸(polyA) ,它的作用可能是使 mRNA 分子穿过核膜进入细胞质;5

46、端是一个甲基化的鸟苷酸,即 G-帽,它除起保护作用外,还使 mRNA 分子识别核糖体,和核糖体结合,进行蛋白质合成。(2)二级结构RNA 的二级结构是指单链RNA 自身回折,链内的互补碱基对形成的局部双螺旋区与非配对顺序形成的突环相间分布的花形结构。tRNA 的二级结构是三叶草型的,一般由四臂四环组成(分子中由 A-U、C-C 碱基对构成的双螺旋区叫臂,不能配对仍显单链的部分叫环)。四环是:D 环(I)、反密码子环( ) 、TC 环( )和可变环( ) ,四臂为氨基酸接受臂、D 臂、反密码子臂和 TC 臂。在氨基酸接受臂,3-OH 端有一个单链区 NCCA-3-OH,在氨基酸合成酶的作用下,活

47、化了的氨基酸连接 tRNA 分子末端腺苷 3-OH 上;在反密码子环上其中有 3 个碱基代表着某种氨基酸的反密码子,正好与 mRNA配对,如图 1-1-14 所示。(3)三级结构RNA 的二级结构在细胞中还要进一步回折扭曲,以使分子内部的自由能达到最小值;在二级结构中突环上未配对的碱基,由于 RNA 链的再度扭曲而与另一突环上的未配对碱基相遇,形成新的氢键配对关系,其结果使平面的二级结构变成立体的三级结构,如图 l-1-15 所示。tRNA 的三叶形的二级结构变成三级结构的倒 L 型,tRNA 发挥生物功能以其倒 L 型三级结构为基础。(三 )核酸的性质1一般理化性质核酸既有磷酸基,又有碱性基

48、团,是两性电解质,因磷酸的酸性强,通常表现为酸性。DNA 为白色纤维状固体,RNA 为白色粉末,都微溶于水,不溶于一般有机溶剂,常用乙醇从溶液中沉淀核酸。D-核糖与浓盐酸和苔黑酚(甲基间苯二酚)共热产生绿色,D-2-脱氧核糖与酸和二苯胺一同加热产生蓝紫色。可利用这两种糖的特殊颜色反应区分 DNA 和 RNA 或作为二者测定的基础。2核酸的紫外吸收性质核酸中的嘌呤和嘧啶环的共轭体系强烈吸收 260-290nm 波段紫外光,最大吸收值在 260nm 处。利用这一特性可以对核酸进行定性和定量测定。如待测DNA 或 RNA 样品的纯度,可用它们的 A260A280 的比值来判断,纯 DNA溶液的 A2

49、60A280 比值为 18,而纯 RNA 溶液的比值为 20,样品中若含有蛋白质,则 A260A280 的比值要下降,因为蛋白质的最大吸收峰在280nm。纯核酸在变性时,吸收值显著升高,称为增色效应。在一定条件下,变性的核酸可复性,则吸收值又回复至原来水平,称减色效应。3核酸的变性和复性核酸的变性是指双螺旋区氢键断裂,空间结构破坏,形成单链无规则线团状态的过程。变性只涉及次级键的变化,而不涉及磷酸二酯键的断裂,故一级结构并不发生破坏(磷酸二酯键的断裂称为核酸降解)。核酸变性以后,紫外吸收值明显升高,黏度下降,浮力密度升高,生物功能部分或全部丧失。引起核酸变性的因素很多,如温度、有机溶剂、酸碱度、尿素、酰胺等试剂均可以使核酸变性。DNA 热变性是爆发式的,只在很窄的温度范围之内发生。通常将热变性温度称为“熔点”或解链

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报