收藏 分享(赏)

晶体的基本概念.doc

上传人:yjrm16270 文档编号:7021667 上传时间:2019-05-01 格式:DOC 页数:15 大小:41.50KB
下载 相关 举报
晶体的基本概念.doc_第1页
第1页 / 共15页
晶体的基本概念.doc_第2页
第2页 / 共15页
晶体的基本概念.doc_第3页
第3页 / 共15页
晶体的基本概念.doc_第4页
第4页 / 共15页
晶体的基本概念.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、第一章 材料的结构2006-09-16 11:50第一章 材料的结构重点与难点:在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。内容提要:在所有固溶体中,原子是由键结合在一起。这些键提供了固体的强度和有关电和热的性质。例如,强键导致高熔点、高弹性系数、较短的原子间距及较低的热膨胀系数。由于原子间的结合键不同,我们经常将材料分为金属、聚合物和陶瓷 3 类。在结晶固体中,材料的许多性能都与其内部原子排列有关。因此,必须了解晶体的特征及其描述方法。根据参考轴间夹角和阵点的周期性,可将晶体分为 7 种晶系,14 种晶胞。本章重点

2、介绍了在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。务必熟悉晶向、晶面的概念及其表示方法(指数),因为这些指数被用来建立晶体结构和材料性质及行为间的关系。在工程实际中得到广泛应用的是合金。合金是由金属和其它一种或多种元素通过化学键合而成的材料。它与纯金属不同,在一定的外界条件下,具有一定成分的合金其内部不同区域称为相。合金的组织就是由不同的相组成。在其它工程材料中也有类似情形。尽管各种材料的组织有多种多样,但构成这些组织的相却仅有数种。本章的重点就是介绍这些相的结构类型、形成规律及性能特点,以便认识组织,进而控制和改进

3、材料的性能。学习时应抓住典型例子,以便掌握重要相的结构中原子排列特点、异类原子间结合的基本规律。按照结构特点,可以把固体中的相大致分为五类。固溶体及金属化合物这两类相是金属材料中的主要组成相。它们是由金属元素与金属元素、金属元素与非金属元素间相互作用而形成。固溶体的特点是保持了溶剂组元的点阵类型不变。根据溶质原子的分布,固溶体可分为置换固溶体及间隙固溶体。一般来说,固溶体都有一定的成分范围。化合物则既不是溶剂的点阵,也不是溶质的点阵,而是构成了一个新的点阵。虽然化合物通常可以用一个化学式(如 AxBy)表示,但有许多化合物,特别是金属与金属间形成的化合物往往或多或少由一定的成分范围。材料的成分

4、不同其性能也不同。对同一成分的材料也可通过改变内部结构和组织状态的方法,改变其性能,这促进了人们对材料内部结构的研究。组成材料的原子的结构决定了原子的结合方式,按结合方式可将固体材料分为金属、陶瓷和聚合物。根据其原子排列情况,又可将材料分为晶体与非品体两大类。本章首先介绍材料的晶体结构。基本要求:1.认识材料的 3 大类别:金属、聚合物和陶瓷及其分类的基础。2.建立原子结构的特征,了解影响原子大小的各种因素。3.建立单位晶胞的概念,以便用来想像原子的排列;在不同晶向和镜面上所存在的长程规则性;在一维、二维和三维空间的堆积密度。4.熟悉常见晶体中原子的规则排列形式,特别是 bcc,fcc 以及h

5、cp。我们看到的面心立方结构,除 fcc 金属结构外,还有 NaCl 结构和金刚石立方体结构。5. 掌握晶向、晶面指数的标定方法。一般由原点至离原点最近一个结点(u,v,w)的连线来定其指数。如此放像机定为u,v,w。u,v,w之值必须使互质。晶面指数微晶面和三轴相交的 3 个截距系数的倒数,约掉分数和公因数之后所得到的最小整数值。若给出具体的晶向、镜面时会标注“指数”时,会在三维空间图上画出其位置。6. 理解 Hume-Rothery 规则,能用事例说明影响固溶度(摩尔分数)的因素(原子尺寸、电负性、电子浓度及晶体结构)。7. 熟悉下列概念和术语:金属学、材料科学基础; 晶体、非晶体;结合能

6、、结合键、键能;离子键、共价键、金属键、分子键、氢键;金属材料、陶瓷材料、高分子材料、复合材料;晶体结构、晶格、晶胞、晶系、布拉菲点阵;晶格常数、晶胞原子数、配位数、致密度;晶面、晶向、晶面指数、晶向指数、晶面族、晶向族;各向异性、各向同性;原子堆积、同素异构转变;陶瓷、离子晶体、共价晶体。1.1 材料的结合方式111 化学键组成物质整体的质点(原子、分子或离子)问的相互作用力叫化学键。由于质点相互作用时,其吸引和排斥情况的不同,形成了不同类型的化学控,主要有共价健、离子键和金属链。1共价键原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键。金刚石、单质硅 iC 等属于共价键

7、。共价键具有方向性,故共价键材料是脆性的。具有很好的绝缘性。2离子键大部分盐类、碱类和金属氧化物在固态下是不能导电的熔融时可以导电。这类化合物为离子化合物。当两种电负性相差大的原子(如碱金属元素与卤族元素的原子)相互靠近时,其中电负性小的原子失去电子,成为正离子,电负性大的原子获得电子成为负离子,两种离子靠静电引力结合在一起形成离子键。在 Nacl 晶体中,离子型晶体中,正、负离子间有很强的电的吸引力,所以有较高熔点,故离子镁材料是脆性的。故固态时导电性很差。3金属键金属原子的结构特点是外层电子少,容易失去。当金属原子相互靠近时,其外层的价电子脱离原子成为自由电子为整个金属所共有,它们在整个金

8、属内部运动,形成电子气。这种由金属正离子和自由电子之间互相作用而结合称为金属键。金属键无方向性和饱和性,故金属有良好的延展性,良好的导电性。因此金属具有正的电阻温度系数,更好的导热性,金属不透明,具有金属光泽。4 范德瓦尔键许多物质其分子具有永久极性 。分子的一部分往往带正电荷,而另一部分往往带负电荷,一个分子的正电荷部位和另一分子的负电荷部位间,以微弱静电力相吸引,使之结合在一起,称为范德瓦尔键也叫分子键。1.2.1 工程材料的键性金属材料的结合主要是金属键,陶瓷材料的结合键主要是离子键与共价键。高分子材料的链状分子间的结合是范德瓦尔键,而链内是共价键。1.2 晶体学基础1.2.1 晶体与非

9、晶体原子排列可分为三个等级,即无序排列,短程有序和长程有序。物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。非晶体在整体上是无序的。晶体与非晶体中原子排列方式不同,导致性能上出现较大差异。晶体具有一定的熔点,非晶体则没有。晶体的某些物理性能和力学性能在不同的方向上具有不同的数值成为各项异性。1.2.2 空间点阵便于研究晶体中原于、分子或离子的排列情况,近似地将晶体看成是无错排的理想晶体,忽略其物质性,抽象为规则排列于空间的无数几何点。这些点代表原子(分子或离子)的中心,也可是彼此等同的原子群或分子群的中心,各点的周围环境相同。这种点的空间排列称为空间点阵,简

10、称点阵,从点阵中取出一个仍能保持点阵特征的最基本单元叫晶胞。将阵点用一系列平行直线连接起来,构成一空间格架叫晶格。晶胞选取应满足下列条件。(1)晶胞几何形状充分反映点阵对称性。(2)平行六面体内相等的棱和角数目最多。(3)当棱间呈直角时,直角数目应最多。(4)满足上述条件,晶胞体积应最小。晶胞的尺寸和形状可用点阵参数来描述,它包括晶胞的各边长度和各边之间的夹角。根据以上原则,可将晶体划分为 7 个晶系。用数学分析法证明晶体的空间点阵只有 14 种,故这 14 种空间点阵叫做布拉菲点阵,分属 7 个晶系, 空间点阵虽然只可能有 14 种,但晶体结构则是无限多的。123 晶向指数与晶面指数常常涉及

11、到晶体中某些原子在空间排列的方向(晶向);和某些原子构成的空间平面(晶面)为区分不同的晶向和晶面,需采用一个统一的标号来标定它们,这种标号叫晶向指数与晶面指数。1晶向指数和标定(1)以晶格中某结点为原点,取点阵常数为三坐标轴的单位长度,建立右旋坐标系,定出欲求晶向上任意两个点的坐标。(2)“末”点坐标减去“始”点坐标,得到沿该坐标系备轴方向移动的点阵参数的数目。(3)将这三个值化成一组互质整数,加上一个方括号即为所求的晶向指数u v w,如有某一数为负值,则将负号标注在该数字上方。2晶面指数的标定(1)建立如前所述的参考坐标系,但原点应位于待定晶 面之外,以避免出现零截距。(2)找出待定晶面在

12、三轴的截距,如果该晶面与某轴平行,则截距为无穷大。(3)取截距的倒数,将其化为一组互质的整数,加圆括号得到晶面指数(h k l)。3晶面族与晶向族在晶体中有些晶面原子排列情况相同,面间距也相等,只是空间位向不同,属于同一晶面族用h k l表示。 晶向族用u v w表示,代表原子排列相同,空间位向不同的所有晶相。4六方系晶面及晶向指数标定坐标系使用了四轴,四轴制中,晶面指数的标定同前,采用四抽坐标,晶向指数用u v t w表示,其中 t= -(u+v)。原子排列相同的晶向为同一晶向族。六方系按两种晶轴系所得的晶相指数可相互转换如下。5.晶带相交于某一晶向直线或平行于此直线的晶面构成一个晶带,此直

13、线称晶带轴。立方系某晶面(h k l)以u v w为晶带轴必有hu+ kv+lw =0两个不平行的晶面(h1k1l1),(h2k2l2)的晶带轴u v w可如下求得6.晶面间距对于不同的晶面族hkl其晶面间距也不同。晶面间距,见公式(1-6)。此公式用于复杂点阵(如体心立方, 面心立方等)时要考虑晶面曾数的增加。13 材料的晶体结构金属键具有无方向性特点,金属大多趋于紧密,高对称性的简单排列。共价键与离子键材料为适应键、离子尺寸差别和价引起的种种限制,往往具有较复杂的结构。131 典型金属的晶体结构最常见的金属的晶体结构有体心立方、面心立方和密排立方。1晶胞中原子数晶体由大量晶胞堆砌而成,故处

14、于晶胞顶角或周面上的原子就不会为一个晶胞所独,只有晶胞内的原子才为晶胞所独有。假设相同的原子是等径钢球,最密排方向上原于彼此相切,两球心距离之半便是原子半径。体心立方晶胞在方向上原子被此相切,原子半径 r 与晶格常数 a 的关系为:r40。2配位数与致密度晶体中原子排列的紧密程度是反映晶体结构特征的一个重要因素。为了定量地表示原子排列的紧密程度,通常应用配位数和致密度这两个参数。配位数是指晶体结构中,与任一原于最近邻并且等距离的原子数。体心立方对面心立方结构致密度为,的密排六方结构(G1633)配位数也是 12,致密度也是 074。3晶体中原子的堆垛方式面心立方与密排六方虽然晶体结构不同,但配

15、位数与致密度却相同,为搞清其原因,必须研究晶体中原子的堆垛方式。面心立方与密排六方的密排111与(0001)原子排列情况完全相同,密排六方结构可看成由(0001)面沿001方向逐层堆垛而成,即按 ABAB顺序堆垛即为密排六方结构。面心立方结构堆垛方式,它是以(111)面逐层堆垛而成的,即按ABCABC顺序堆垛。原子排列的紧密程度,故两者都是最紧密排列。4晶体体结构中的间隙由原子排列的刚球模型可看出球与球之间存在许多间隙,分析间隙的数量、大小及位置对了解材料的相结构、扩散、相变等问题都是很重要的。面心立方八面体间隙比体心立方中间隙半径较大的四方体间隙半径还大,因此面心立方结构的Fe 的溶碳量大大

16、超过体心立方结构的。密排六方的间隙类型与面心立方相同,同类间隙的形状完全相同,仅位置不同,在原子半径相同的条件下这两种结构同类间隙的大小完全相同。132 共价晶体的晶体结构周期表中 IVA,VA,VIA 元素大多数为共价结合,配位数等于8N,N 是族数。Si,GeSn 和 C 具有金刚石结构,依 8N 规则,配位数为 4。As,Sb,Bi 为第 V 族元素,具有菱形的层状结构,配位数为 3.Se,Te 为 VIA 族元素,呈螺旋分布的链状结构,依 8N 规则,配位数为 2。1.3.3 离子晶体的晶体结构图 1-31(a)为 CsCl 结构型,属简单立方点阵,负离子占阵点位置,正离子占立方体间隙

17、位置,离子配位数为 8,如 CsCl, CsBr等,图 1-31(b)为 NaCL 结构型,属面心立方点阵,负离子占点阵点位置,正离子占八面体间隙,配位数为 6。每晶胞有 4 个负离子,4 个正离子,如 NaCL,KCL,MgO,CaO 等。图 1-31(c)为闪锌矿结构,也属面心立方点阵,负离子占点阵点位置,正离子占 1/2 四面体间隙,相当于将金刚石结构中处于在四面体间隙位置的原子换成异类原子而得到的,离子配位数为 4。Zn,BeO,SiC 等具有这种结构。图 131(d)为荧石结构即 CaF2 结构,属面心立方点阵。负离子位于所有四面体间隙位置上,正离子占阵点位置。正离子配位数为 8,负

18、离子配位数为 4。分子式 AX2,如CaF2,ZrO2 电,CeO2 等。若金属与非金属互换则叫反荧石结构,如Li2,Na2O,K2O 等。图 131(e)为纤锌矿结构,负离子占密排六方的结点位置,正离子占四面体间隙的 l2,如 ZnS,ZnO 等。如果负离子排成密排六方,正离子占其间隙,还可产生以密排六方为基础的其他结构,如砷化镍结构等。134 合金相结构纯金属的强度较低,所以工业广泛应用的是合金。合金是两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其他方法组合而成,并具有金属特性的物质,如黄铜是铜锌合金,钢、铸铁是铁碳合金。组成合金最基本的独立物质叫组元,组元间由于物理的和

19、化学的相互作用,可形成各种“相”。“相”是合金中具有同一聚集状态,成分和性能均一,并以界面互相分开的组成部分。由一种相组成的合金叫单相台金,如含锌 30Wc 的 CuZn 台金是单相合金。而含锌 40Wc 时则是两相合金,除生成了固溶体外,还形成了金属间化合物。1固溶体凡溶质原子完全溶于固态溶剂中,并能保持溶剂元素的晶格类型所形成的合金相称为固溶体。固溶体的成分可在一定范围内连续变化,随异类原子的溶入,将引起溶剂晶格常数的改变及晶格畸变,致使合金性能发生变化。通常把形成固溶体使强度,硬度升高的现象叫固溶强化。根据溶质原子在溶剂中是占结点位置,还是占间隙位置,可将其分为置换固溶体与间隙固溶体;若

20、溶质与溶剂以任何比例都能互溶,固溶度达 100,则称为无限固溶体,否则为有限固溶体;若溶质原子有规则地占据溶剂结构中的固定位置,溶质与溶剂原子数之比为一定值时,所形成的固溶体称为有序固溶体。(1)置换固溶体(a)组元的晶体结构类型溶质与溶剂晶格结构相同则固溶度较大,反之较小。(b)原子尺寸因素溶剂原子半径 rA 与溶质原子半径 rB 的相对差(rArB)rA 不超过 14。15有利于大量固溶,反之固溶度非常有限。(c)电负性因素两元素的电负性相差越大,化学亲和力越强,所生成的化合物也越稳定。(d)电子浓度因素电子浓度定义为合金中价电子数目与原子数目的比值。(2)间隙固溶体一些原子半径小于 0.

21、1nm 的非金属元素如 H,O,N,C,B 等受原子尺寸因素的影响,不能与过渡族金属元素形成置换固溶体,却可处于溶剂晶格结构中的某些间隙位置,形成间隙固溶体。(3)固溶体的微观不均匀性固溶体的溶质原子分布无序分布、偏聚分布、短程有序分布。对于某些合金,当其成分接近一定原子比时,较高温度时为短程有序,缓冷到某一温度以下,会转变为完全有序状态称为有序固溶体,这一转变过程称为固溶体的有序化。固溶体又称超结构或起点阵。2中间相两组元组成的合金中,在形成有限固溶体,如果溶质含量超过其溶解度时将会出现新相,其成分处在 A 在 B 中和 B 在 A 中的最大溶解度之间,故叫中间相。因此中间相具有金属的性质,

22、又称金属间化合物。(1)正常价化合物金属与周期表一些元素形成的化合物为正常价化合物,符合化学上的原子价规律,所以正常价化合物包括从离子键,共价键过渡到金属键为主的一系列化合物。正常价化合物一般具有较高硬度和脆性,在合金中弥散分布在基体上,常可起弥散强化作用。(2)电子化合物贵金属 Cu、Ag、Au 与 Zn,Al,Sn 所形成的合金:在它们中,随成分变化所形成的一系列中间相具行共同规律即晶体结构决定于电子浓度,称为休姆罗塞里定律。决定电子化合物结构的主要因素是电子浓度,但并非唯一因素其他因素,特别是尺寸因素仍起一定作用。电子化合物的结合键为金属键,熔点一般较高,硬度高,脆性大,是具有金属中的重

23、要强化相。(3)间隙相与间隙化合物过渡族金属可与 H,B,C,N 等原子半径甚小的非金属元素形成化合物。化合物具有简单的晶体结构称为间隙相。当其结构复杂,通常称为间隙化合物。(a) 间隙相间隙相可用简单化学式表示,并且一定化学式对应一定晶体结构,间隙相具有极高硬度和熔点,虽然间隙相中非金属原子占的比例很高,但多数间隙相具有明显的金属性,是合金工具钢及硬质合金的主要强化相。(b)间隙化合物间隙化合物种类较多,具有复杂的晶体结构。一般合金钢中常出现的间隙化合物为 Cr,Mn,Mo,Fe 的碳化物或它们的合金碳化物,主要类型有 M3C,M7C3,M23C6 等。间隙化合物晶体结构十分复杂,例如 Cr

24、23C6 具有复杂立方结构,包含 92 个金属原了,24 个碳原子。现仅以结构稍简单的渗碳体(Fe3C)为例说明之,其晶体结构如图 l41。属正交晶系,晶胞中共有 16个原子,其中铁原子 12 个碳原子 4 个符合 Fe:C3:1 关系。铁原子接近密堆排列,碳原子位于其八面体间隙。间隙化合物的熔点及硬度,见表 19。均比间隙相略低,是刚中最常见的强化合相。(4)拓扑密堆相拓扑密堆相是由大小不同的原子适当配合,得到全部或主要是四面体间隙的复杂结构。空间利用率及配位数均很高,由于具有拓扑学特点,故称之为拓扑密堆相,简称 TCP 相。许多合金系能形成拉弗斯相如 ZrFe2,TiFe2,TiFe2,MoFe,NbCo2,TiCo2,TiC2,ZrCr2 等。一般讲拉弗斯相往往呈针状析出于基体,有时是有害的,但也有个别耐热铁基合金以为其强化相。习题解释一下基本概念空间点阵、晶体结构、晶胞、配位数、致密度、金属键、缺位固溶体、电子化合物、间隙相、间隙化合物、超结构、固溶体、间隙固溶体、置换固溶体。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报