收藏 分享(赏)

基于DSP的光伏并网系统MPPT算法研究.doc

上传人:hwpkd79526 文档编号:6958863 上传时间:2019-04-28 格式:DOC 页数:5 大小:85KB
下载 相关 举报
基于DSP的光伏并网系统MPPT算法研究.doc_第1页
第1页 / 共5页
基于DSP的光伏并网系统MPPT算法研究.doc_第2页
第2页 / 共5页
基于DSP的光伏并网系统MPPT算法研究.doc_第3页
第3页 / 共5页
基于DSP的光伏并网系统MPPT算法研究.doc_第4页
第4页 / 共5页
基于DSP的光伏并网系统MPPT算法研究.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、基于 DSP 的光伏并网系统 MPPT 算法研究关键字: 电源技术 LCD 高效背光 光伏并网 整车控制 多载波 扩频控制介绍了以 DSP 为主控芯片的光伏并网系统,它能跟踪光伏阵列最大输出功率点,实现光伏阵列和负载优化匹配,使负载获得最大功率。在光伏阵列输出功率最大为跟踪目标的定步长 MPPT 一阶差分算法的基础上,采用以使负载获得最大功率为跟踪目标的变步长寻优MPPT 算法,能够更好地实现最大功率点的跟踪。实验结果表明:该系统能够快速准确地跟踪太阳能电池最大功率点,并自动同步跟踪电网频率和相位,实现并网电流的正弦波形以便与电网电压同频同相馈入电网,提高了系统逆变效率和可靠性。太阳能光伏发电

2、是当前利用新能源的主要方式之一,光伏并网发电是光伏发电的发展趋势。光伏并网发电的主要问题是提高系统中太阳能电池阵列的工作效率和整个系统的工作稳定性,实现并网发电系统输出的交流正弦电流与电网电压同频同相1-2。最大功率点跟踪 MPPT(maximum power point tracking)是太阳能光伏发电系统中的重要技术,它能充分提高光伏阵列的整体效率。在确定的外部条件下,随着负载的变化,太阳能电池的输出功率也会变化,但始终存在一个最大功率点。当工作环境变化时,特别是日光照度和结温变化时,太阳能电池的输出特性也随之变化,且太阳能电池输出特性的变化非常复杂。目前太阳能光伏发电系统转换效率较低且

3、价格昂贵,因此,使用最大功率点跟踪技术提高太阳能电池的利用效率,充分利用太阳能电池的转换能量,应是光伏系统研究的一个重要方向。1 单相光伏并网发电系统的组成单相光伏并网发电系统的功能是将太阳能电池阵列输出的直流电变换为交流电,经过交流滤波后把正弦波交流电送入电网。并网 DC/AC 逆变器是光伏并网发电系统的核心部件之一,主要采用电压源型电流控制。为满足电压源型电流控制并网逆变器的固有交直流变化比关系,即直流侧电压要高于交流侧电压,在光伏电池阵列输出电压较低的系统中,在 DC/AC 逆变电路前增加一个 Boost(升压)电路进行电压匹配。光伏并网发电系统采用双闭环控制实现并网电流与电网电压同频同

4、相的跟踪,并稳定全桥逆变电路的直流母线电压。图 1 是单相光伏并网发电系统框图。 2 光伏并网系统工作电路原理光伏并网系统工作时的电路原理图如图 2 所示3-4 。图中,Vg 是电网电压,Vi 是并网逆变器输出的高频 SPWM电压,R 为线路等效电阻,L 为串联电感,I 为送入电网的电流。为保证送入电网功率因数为 1,送入电网的电流相位必须与电网电压相位一致。以电网电压 Vg 为参考,则 I 与 Vg 同相位,线路等效电阻 R 两端的电压 VR 与电网电压 Vg 相位一致,串联电抗器 L 两端的电压 VL 相位则落后于 VR 90,由此可得 Vi 相位和幅值 。图 3 为系统工作矢量图。3 光

5、伏并网系统 MPPT 跟踪算法太阳能光伏电池输出特性为非线性,输出功率受光照强度和环境温度的影响非常明显。在任何时刻,光伏电池都存在一个最大输出功率的工作点,而且随着光照强度和温度的变化,最大功率点的位置也在不断变化。为能充分利用太阳能光伏电池的光电转换能力,就需要实时控制光伏电池的工作点,以获得最大功率输出。3.1 定步长算法图 4 是具有定步长的 MPPT 一阶差分算法框图。实现太阳能光伏阵列的最大功率点跟踪实质上是一个自寻优过程5,通过对光伏阵列当前时刻输出电压与电流的检测,得到当前时刻光伏阵列输出功率,再与已被存储的前一时刻光伏阵列功率值比较,舍小存大,再检测,再相比较,如此不停地周而

6、复始,便可使光伏阵列动态地工作在最大功率点上。功率达到最大值时满足: 3.2 变步长控制算法由光伏阵列的 I-V 特性曲线可知,只有当光伏阵列工作在最大功率点时,光伏阵列才能输出最大功率6-7。定步长的 MPPT 一阶差分算法是以光伏阵列输出功率最大为跟踪目标的。但在实际系统中,最重要的是负载获得的功率是否为最大。基于此提出以负载获得功率的变化代替以光伏阵列输出功率的变化来进行最大功率点跟踪的控制策略。同时,根据电网电压基本上为恒定值的特性,对注入电网的电流的变化进行最大功率点跟踪。在具体控制算法上采用改进的变步长电压扰动法,当离最大功率点较远时,步长较大,寻优速度加快;当接近最大功率点时,步

7、长较小,逐渐地逼近最大功率点;当非常接近最大功率点时,系统稳定在该点工作,最终实现光伏阵列的真正最大功率点跟踪。电流在实际的跟踪过程中,搜索步长要根据当前光伏阵列的工作点相对于最大功率点的距离而作出相应改变;同时,在搜索过程中,为了避免误判断设置了光伏阵列工作电压的上下限幅值。相应的控制框图如图 5 所示。4 实验结果分析对以 DSP 为核心控制的数字化光伏并网系统进行了实验分析。DC/DC 直流升压(Boost)电路将 100V 直流电压升到 400V 直流电压,主电路采用电压型逆变的拓扑结构,开关器件采用 IGBT,驱动信号由 DSP 控制电路经光耦隔离后给出。图 6 为 MPPT 算法的

8、光伏阵列输出曲线,图 7 为并网电流与电网电压波形。实验结果表明:基于 DSP 的光伏并网系统能较好地跟踪光伏阵列最大功率点,使负载获得最大功率。通过对电网电压相位的捕捉和电感电流的采样,实现了系统输出的并网电流与电网电压保持同频同相,且并网电流波形与电网电压波形时刻保持轮廓一致,从而保证功率因数接近 1,实现以 220V/50Hz 正弦交流电顺利并网。以 DSP 为主要控制芯片的光伏并网系统,具有较好的工作性能与动态响应特性。在定步长 MPPT 一阶差分法基础上,采用使负载获得最大功率为跟踪目标的变步长 MPPT 控制算法,能更好地实现最大功率点的跟踪。该算法可以降低光伏发电系统的太阳能电池

9、阵列的功率配置,且能适应光照强度和环境温度的较大变化,从而降低系统成本, 有效地提高系统性能价格比,使太阳能电池得到充分的利用。该系统还能自动同步跟踪电网频率和相位,使输出功率因数接近 1,提高了系统的稳定性,增加了应用范围。参考文献1 STRONG S JWorld overview of building-integrated photovoltaicCConference Record of the Twenty Fifth IEEEWashington ,DC:IEEE,1996:1197-12022 SOLODOVNIK E V, LIU Sheng Yi. DOUGAL R APo

10、wercontroller design for maximum power tracking in solar installationsJ IEEE Transaction on Power Electronics,2004,19(5) :1295-1304 3 戴欣平,马广,杨晓红太阳能发电变频器驱动系统的最大功率追踪控制法J中国电机工程学报,2005 ,25 (8):95-99 4 吴理博,赵争鸣,刘建政,等用于太阳能照明系统的智能控制器J清华大学学报,2003,43(9):1195-11985 CHUNG,H S H,TSE K K,HUI S Y R,et al A novelma

11、ximum power point tracking technique for solar panels using a SEPIC or Cuk converterJ IEEE Transactions onPower Electronics,2003,18(3):717-7246 WANG Xuan Yuan, KAZERANI M. A novel maximum power point tracking method for photovoltaic grid-connected invertersC. s.l:Industrial Electronics Society,The 29thAnnual Conference of the IEEE, 2003,3(9):2332-2337.7 KAWAMURA T,HARADA K, ISHIHARA U,et alAnalysis of MPPT characteristics in photovoltaic PowerSystemJSolar Energy Materials and Solar Cells,1997,47(4):155-165

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报