1、,1、一块长方形足球场地:长为 m,宽为 n,周长: ; 面积: 。,2(m+n),mn,2、小明骑车上学,路程为S,时间为t,小明骑车的速度 。,4、如果正方体的棱长是b,那么正方体的体积是。,b3,3、哥哥今年a岁,弟弟比哥哥小3岁,弟弟今年 岁 。,(a-3),课前测试,3.2 代数式,学习目标: 1、在具体情景中进一步理解字母表示数的意义. 2、在具体情景中能求出代数式的值,并解释 它的实际意义.使学生能把简单的与数量有 关的词语用代数式表示出来. 3、通过师生共同探讨用字母表示数,使学生 感受到数学与日常生活和其他学科的密切联 系, 初步培养学生观察、分析和抽象思维的 能力,来提高学
2、生学习的兴趣.,自学交流:,1、自学课本81页到82页独立完成随堂练习(5分钟)2、交流自学中遇到的问题,力争组内解决(3分钟),2(m+n)、T-5、mn、 、b3,观察这些式子有什么特点,一、代数式的定义,用运算符号把数或表示数的字母连接成的式子叫代数式;,单独一个数或一个字母也是代数式。,代数式的主要成份是数、字母以及基本运算符号,其中可以不包括数,也可以不包括字母,还可以不包括运算符号。,判断下列各式是不是代数式,d4 , 2x, S=r2 , x=2, 8-32, -5,x-y, T。,考考你的眼力,二、列代数式,1.一个数比5的3倍少1,求这个数,53-1,2.一个数比x的3倍少1
3、,求这个数,3x-1,一个数乘5得m,求这个数,写成x3-1是不规范的,写成m5是不规范的,或者 1.5a,需要特别注意的问题,1、代数式中,表示相乘关系应避免使用“”,一般可以用“”,或者干脆省略不写,(数与数之间相乘还要沿用“”)。,2、数与字母相乘时,数一定要写在字母的前面(数字在前,字母断后)。,3、带分数与字母相乘时,就把带分数化为假分数。,4、代数式中出现除法运算时,一律写成分数的形式。,练一练:用代数式表示(1)f的11倍再加上2可以表示为 ; (2)数a的 与这个数的和可以表示为 ;(3)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只;,11f+2,(a+b),(2a+4b),
4、例1、某公园的门票价格:成人10元/人;学生5元/人.,三、列代数式并求值,(1)一个旅游团有成人x人、学生y人,那么该旅游团应付多少门票费?,解:把x37,y15代入代数式得10x5y =1037515 445(元),解:成人应付的门票费:,(10x)元,学生应付的门票费:,(5y)元,该旅游团应付的门票费:,(10x+5y)元,(2)如果该旅游团有37个成人,15个学生,那么门票费是多少呢?,(1)如果用x(元/kg)表示大米的价格,用y(元/kg)表示食油的价格,那么10x5y就表示小强的妈妈购买10kg大米和5kg食油所用的费用;(2)如果用x(kg)表示一张课桌的质量,用y(kg)表
5、示一个凳子的质量,那么10x5y就表示10张课桌和5个凳子的质量和,等等.,代数式10x+5y还可以表示什么?,想一想,例2.如图,小明将边长为10厘米的正方形纸片的4 个角剪去一个边长为x厘米的小正方形,做成一个无盖的纸盒,你能算出纸箱盒的表面面积吗?,10,x,解:,正方形纸片的面积:,1010=100(平方厘米),被剪去的4个小正方形的面积:,4xx=4x2 (平方厘米),纸箱盒的表面积:,(100-4x2 )平方厘米,知识收获: 我知道了我掌握了 过程收获: 我自学的精神状况和效果自己参与小组交流的情况自己是否争取在班级展示机会,课堂小结,1、代数式的定义,代数式就是用基本的运算符号把
6、数、表示数的字母连接而成的式子,单独一个数或一个字母也是代数式。,2、代数式的写法,1.数字与字母、字母与字母、数字或字母与括号相乘时,乘号通常简写作 “ 或者省略不写; 2.在实际问题中含有单位时,如果最后运算结果是和或差的形式时,要把整个的代数式括起来再写单位。 3.在代数式中出现除法运算时,一般按照分数的写法来写 4.遇到带分数与字母相乘时,要将带分数改写成假分数,巩固性练习:,1、练习:用代数式表示,(1)a与b的差的2倍,(2)a与b的2倍的差,(3)a与b,c两数之和的差,(4)a,b两数之差与c的和,2(a-b),a-2b,a-(b+c),(a-b)+c,3、想一想: 举例说明下列代数式的意义,(1)8a2可以解释为 ;(2) m可以解释为 ;(3)8(ab)可以解释为 ;(4)6p-k可以解释为 .,2、一个两位数字的个位数学是a,十位数字是b,请用代数式表示这个两位数;,1 2,1,2,十位数,个位数,110 + 2,b,a,10b + a,拓展延伸,作业布置: P83页 知识技能1数学理解2,