收藏 分享(赏)

金属焊接及切割技术.doc

上传人:ysd1539 文档编号:6828513 上传时间:2019-04-23 格式:DOC 页数:38 大小:5.37MB
下载 相关 举报
金属焊接及切割技术.doc_第1页
第1页 / 共38页
金属焊接及切割技术.doc_第2页
第2页 / 共38页
金属焊接及切割技术.doc_第3页
第3页 / 共38页
金属焊接及切割技术.doc_第4页
第4页 / 共38页
金属焊接及切割技术.doc_第5页
第5页 / 共38页
点击查看更多>>
资源描述

1、 American Welding Society & Moody International 1 of 36 Module 3第三章金属连接及切割工艺目 录介绍 2焊接工艺 3钎焊工艺 28切割工艺 30小结 35术语和定义 35American Welding Society & Moody International 2 of 36 Module 3第三章 金属连接及切割工艺介绍作为焊接检验师, 首先关心的是焊接,但掌握各种连接及切割工艺也是非常有帮助的。虽然焊接检验师不必是有资格的焊工,但以往的焊接经验是很有用的。事实上,很多焊接检验师是从焊工中选取的,而且他们往往能成为最好的检验师。

2、一个好的焊接检验师,必须掌握各种连接及切割工艺方面的知识,以便有效的进行工作。首先,检验师必须认识到每种工艺的长处或短处,也应该知道特定的工艺可能会产生哪些不连续。虽然许多缺陷的产生是与实施的工艺无关的,但有些缺陷的产生是与特定的工艺有关,这里将对每种工艺可能产生的缺陷进行探讨并将其定为“可能出现的问题” 。焊接检验师也必须具备与各种工艺相关的焊接设备方面的知识,因为缺陷的产生经常是由设备原因引起的。检验师必须在一定程度上掌握各种设备的控制方法以及设备调整与焊接质量之间的关系。当焊接检验师具备某些工艺方面的基础知识后,他或她便可以准备进行目视焊接检验,这将有助于及时发现问题而不是事后采取花费很

3、大的纠正措施。检验师具备在过程中发现问题的 能力无论对生产还是产品质量的控制都是有益的。具备焊接工艺方面的知识的另一个好处是,焊工尊重检验师以及所做的结论;另外,焊工也更倾向于将在实际焊接过程中遇到的问题交由检验师处理,这将有助于检验师与焊工和其他制造人员的合作。本章所讨论的内容分为三个部分:焊接、钎焊和切割。焊接和钎焊用于金属间的连接,而切割则是为了将材料去除或将其分离。对每一种连接和切割方法,这里将描述其主要特性,包括:每种工艺的长处、短处、设备要求、焊条/填充金属、技术、应用范围以及可能出现的问题。在金属产品的制造中有很多种连接和切割方法,图 3。1 描述了由美国焊接学会给出的焊接和及其

4、相关工艺总图,此图将连接和切割方法进行分类,命名为焊接工艺及相关工艺。其中焊接工艺分为七组,分别为电弧焊、固相焊、电阻焊、气焊、软钎焊、硬钎焊以及其他焊接。相关工艺包括热喷涂、粘接以及热切割(包括氧气、电弧及其它) 。本课程不可能对这么多工艺一一描述,因此,本课程仅选取与美国焊接学会认可焊接检验师考试相关的工艺进行讨论,详列如下:焊接工艺 钎焊工艺 切割工艺 手工电弧焊 火焰钎焊 气割 气体保护电弧焊 炉中钎焊 碳弧切割 药芯焊丝电弧焊 感应钎焊 等离子切割 钨极气体保护电弧焊 电阻钎焊 机械切割 埋弧焊 浸沉钎焊 等离子焊 红外线加热钎焊 电渣焊 氧乙炔焊American Welding S

5、ociety & Moody International 3 of 36 Module 3 螺柱焊 激光束焊 电子束焊 电阻焊焊接工艺在讨论各种焊接工艺之前,有必要先搞清楚焊接的具体含义。根据美国焊接学会的定义,焊接是“通过将材料加热到焊接温度、加压或不加压,或仅通过加压,使用或不使用填充材料而将金属或非金属在局部接合的过程” ,接合即“连接在一起” ,因此焊接是指实现连接的操作活动。本节将对加热但不加压的常用焊接工艺的基本特性作一介绍。对各种焊接工艺而言,需强调的是它们具有某些共性。为了获得满意的焊缝,焊接工艺中的一些American Welding Society & Moody Inte

6、rnational 4 of 36 Module 3特定要求必须予以满足,包括加热所需的能量、保护熔融金属免受大气影响的方法以及填充金属(可根据工艺和接头形式选择) 。之所以一种工艺不同于其他工艺,就是因为他们各自用不同的方式以满足上述的共性,这也是不同焊接工艺形成的原因。因此,对每种焊接工艺而言,就必须掌握其如何满足这些特定要求。手工电弧焊(SMAW)这里首先要讨论的是手工电弧焊,也就是我们通常所说的“手把焊” ,它是通过带药皮的焊条和被焊金属间的电弧将被焊金属加热,从而达到焊接的目的。图 3.2 给出了手工电弧焊的各种影响因素及成型的情况。从图中可以看出,焊条和工件的电弧是由电流引起的,它

7、提供热能并将母材、填充金属以及药皮融化,随着电弧向右移动,焊接金属得以凝固并在表面形成一层焊渣,焊渣是在金属的凝固过程中浮上来的,因此,焊接缺陷夹渣,即使很少,也有可能出现。图 3.2 也说明了焊接保护气体是由焊条药皮在加热后分解形成的,这些气体帮助焊剂为电弧周围的熔融金属提供保护。手工电弧焊中最主要的要素是焊条本身,它是由金属芯外覆一层粒状焊剂和某种粘接剂制作而成的。所有的碳钢和低合金钢焊条基本上都用低碳钢丝做芯,而合金元素则来自于药皮,这也是较为经济的一种合金化方法。焊条药皮的不同导致了不同焊条种类,焊条药皮有以下五种作用:(1) 保护药皮分解后产生的气体为熔融金属提供保护。(2) 脱氧药

8、皮为焊剂去除氧气和其他气体。(3) 合金化药皮为焊缝提供合金化元素。(4) 电离药皮改善电特性以增强电弧稳定性。(5) 保温凝固的焊渣在焊缝金属上的覆盖降低了焊缝金属的冷却速度(次要影响) 。由于焊条在手工电弧焊中的影响很大,就有必要了解其分类和品种。美国焊接学会给出了手工电弧焊焊条的标识方法,见图 3.3。美国焊接学会技术条件 A5.1 和 A5.5 分别介绍了对碳钢和低合金钢焊条的有关要求,并描述了它们的分类和特性。焊条标识中用字母 E 和另外四到五个数字组成,字母E 代表焊条。前二个数字代表熔敷金属的最小抗拉强度,单位为千磅每平方英寸, “70”就表示熔覆金属的最小抗拉American

9、Welding Society & Moody International 5 of 36 Module 3强度为 70,000 磅每平方英寸(PSI) 。接下来的数字代表焊条的可焊位置。数字“1”表示焊条可用于任何焊接位置,数字“2”表示熔融金属流动性非常好,只能用于平焊或角焊缝的横焊,数字“4”表示焊条可用于立向下焊,数字“3”不再使用。最后一个数字表示焊条药皮的组成和性能,药皮决定了可焊性和推荐的电流类别,AC(交流) ,DCEP(直流反接)或 DCEN(直流正接) 。图 3.4 列出了手工电弧焊的焊条标识方法。F-No 分类 电流 电弧 熔深 药皮与焊渣 铁粉F-3 EXX10 直流反

10、接 深 深 纤维素钠 0-10%F-3 EXXX1 交流与直流反接 深 深 纤维素钾 0%F-2 EXXX2 交流与直流正接 中等 中 钛钠型 0-10%F-2 EXXX3 交流与直流 轻 轻 钛钾型 0-10%F-2 EXXX4 交流与直流 轻 轻 钛型铁粉 24-40%F-4 EXXX5 直流反接 中 中 低氢钠 0%F-4 EXXX6 交流或直流反接 中 中 低氢钾 0%F-4 EXXX8 交流或直流反接 中 中 低氢铁粉 25-45%F-1 EXX20 交流或直流 中 中 氧化铁钠 0%F-1 EXX24 交流或直流 轻 轻 钛型铁粉 50%F-1 EXX27 交流或直流 中 中 氧化

11、铁铁粉 50%F-1 EXX28 交流或直流反接 中 中 低氢铁粉 50%图 3.4 手工电弧焊焊条后缀数字的含义必须强调的是,焊条最后一个数字为“5” 、 “6”和“8”的,表示其为“低氢焊条” 。为了保持其低氢含量以免受潮,这些焊条必须按原包装密封保存,或贮存在适宜的烘箱内,这些烘箱应采用电加热并将温度控制在 150F 至 350F 的范围内,烘箱必须保持低的潮湿度(小于 0.2%) ,因此需要有合适的通风能力。任何低氢焊条如果不用或刚拆封应立即放入烘箱,大多数规范均要求低氢焊条在拆封后放入温度不低于 250F(120C)的烘箱中。但是,这里也必须指明的是,除以上说明外,其它焊条放入烘箱可

12、能是有害的。有些焊条是要有一定的潮湿度的,如果潮湿度下降,焊条的可焊性将急剧下降。低合金钢焊接的焊条,是在标准的焊条标识后,再加上用字母和数字组成的后缀,图 3.5 给出了一些重要的组合。American Welding Society & Moody International 6 of 36 Module 3手工电弧焊的设备相对简单,见图 3.6。可以看出,一条导线连接待焊工件,另一条导线连接至焊工夹持焊条的焊把,焊条和母材通过焊条和工件靠近后产生的电弧加热后而熔化。手工电弧焊的电源就是通常所说的恒流电源,它具有“下降”的特性,这个术语可通过观察电源的电压电流曲线图来加以理解。当焊工增加弧

13、长时,将会增加焊接回路的电阻,从而导致电流的轻微下降(10%) ,见图 3.7(A) ,电流的下降促使电压急剧地上升(32%) ,电压的上升又反过来限制了电流的进一步下降。由于热量是电压、电流以及时间的函数,可以看出长的电弧 (32Vx135Ax60)/10IPM=25,920J/in.)将比短的电弧(22Vx150Ax60)/IPM=19,800J/in.)产生更多的热量。从工艺控制的角度看,这点很重要,因为焊工可通过改变电弧长度来增减焊缝熔池的流动性。但是,太大的电弧长度将使电弧的集中度降低,从而导致熔池热量的损失,使电弧稳定性降低,也会损失熔池的保护气体。如果电源装备有特性控制,通过调整

14、焊接电源,焊工就可通过轻微改变电弧长度从而达到控制焊接熔池流动性的目的。图 3.7(B)给出了两个不同下降特性的设定,有经验的焊工将选择缓降特性设定以便更好的控制,而没有经验的焊工会选择陡降特性设定以减少由于电弧长度不稳造成的焊接熔池的变化。除特殊合金材料外,手工电弧焊在大多数工业中大量使用。但它也是一种相对陈旧的焊接方法,有些新的焊接工艺在某些方面的应用上已经取代了它,即便这样,手工电弧焊仍然在焊接工业中广泛应用。有以下几个原因说明了它应用的广泛性。第一,设备简单而便宜,这就使得手工电弧焊很轻便。事实上,有很多种由汽油或柴油驱动的电焊机,用来完成在没有电的边远地区的焊接任务。还有,有些新的固

15、态电源小而且轻巧,焊工很容易携带它们去工作。另外,由于各种各样的焊条易于获取,这种焊接工艺被认为是万能的。最后,随着设备和焊条的不断改进,这种焊接方法始终能保持很高的焊接质量。手工电弧焊的其中一个局限性是焊接速度,它受到焊工周期性停止焊接,来更换长度为 9 到 18 英寸焊条的限制。手工电弧焊在许多应用场合已被其它半自动、机械化和自动化的焊接工艺所取代,原American Welding Society & Moody International 7 of 36 Module 3因就是这些工艺与手工电弧焊相比,有着更高的生产效率。手工电弧焊的另一个缺点也是影响生产率的,即焊后焊渣的清理。而且,

16、当使用低氢焊条时,还需要有适当的贮存设施如烘箱以保持其较低的潮湿度。有关手工电弧焊的基本原理先介绍到此,接下来讨论手工电弧焊可能产生的缺陷,这些缺陷不仅是我们可预料的,也可能来自于工艺使用不当。一种缺陷是焊缝中的气孔,是由于焊缝周围的潮湿和污染引起的,它可能来自于焊条药皮、材料表面或周围的大气,气孔也可能是由于焊工使用过长的电弧引起的,这点对低氢焊条尤其突出,因此,短弧将有助于减少气孔的出现。气孔也可能是由所说的“电弧偏吹”现象造成的,它存在于所有的电弧焊当中,这是一种常见问题且常常使手工焊焊工很苦恼。(1) 要理解电弧偏吹,首先要知道当电流通过导体时,周围将产生磁场,磁场方向垂直于电流方向,

17、可以看作是围绕着导体周围的一组同心圆组成的,(2) 减小焊接电流(3) 向电弧偏吹的相反方向倾斜焊条(4) 在接头两端用大的定位焊,在接头内用断续的定位焊(5) 向着大的定位焊或完工焊缝的方向焊接(6) 用分段退焊法(7) 远离接地以减小电弧后吹,朝向接地以减小电弧前吹(8) 将电缆连接至焊缝两端(9) 将电缆缠绕在工件周围,其电流方向应能产生抵销电弧偏吹的磁场(10) 在接头末端加熄弧板除会产生气孔外,电弧偏吹还会导致飞溅、咬边、成型不好并降低焊接熔深。只要是通过焊剂提供保护,就有可能产生夹渣,手工电弧焊也不例外。焊工可通过运用使焊渣充分浮到熔池表面的工法以降低产生夹渣的可能性,另外,在多道

18、焊中,在下一层施焊之前,把焊道上的焊渣完全清理干净就能减少夹渣的发生。由于手工电弧焊是通过手工操作来完成的,如果运用不当,就有可能出现各种缺陷,如未熔合、未焊透、裂纹、咬边、焊瘤、焊缝尺寸不对和不当的焊缝断面。气体保护电弧焊(GMAW)这里要讨论的工艺是气体保护电弧焊,简写为 GMAW。它是美国焊接学会所给出的一种工艺,也就American Welding Society & Moody International 8 of 36 Module 3是我们常说的熔化极惰性气体保护电弧焊 MIG。通常它是用作一种半自动工艺,但也可作为机械化和自动化工艺来应用,因此它很适合于焊接机器人来操作。气体保

19、护电弧焊是通过焊枪连续不断的送丝,由焊丝和工件之间产生的电弧的热量将母材和焊丝熔化,从而达到焊接的目的。图 3.10 描述了这一焊接工艺的基本过程。气体保护电弧焊很重要的一个特点是焊接过程的保护气体也是由焊枪输送的,这些气体有惰性的,也有非惰性的。惰性气体如氩、氦可用于某些焊接当中,它们可单独使用,也可混合使用,或与其它非惰性气体如氮气、氧气或二氧化碳混合使用。多数气体保护电弧焊使用二氧化碳作为保护气体,因为与惰性气体相比,它价格较为便宜。气体保护电弧焊的电极是实芯焊丝,实芯焊丝缠绕成不同规格尺寸盘或卷,美国焊接学会给出了它们的标识方法,是以字母 ER 打头,后面有二到三个数字,然后是连字符

20、S,最后是一个数字,见图3.11。字母 ER 代表焊丝既可用作电极,也可用作填充金属,或仅用作填充金属(对其它焊接工艺而言) 。二到三个数字表示焊缝金属的最小抗拉强度,单位为千磅每平方英寸。因此,与手工电弧焊一样, “70”就表示填充金属的最小抗拉强度为 70,000 磅每平方英寸(PSI) 。字母 S 表示为实芯焊丝,连字符后的最后一个数字表示电极的化学成分,说明了其操作特性以及焊缝的性能。典型的气体保护电弧焊电极均增加脱氧剂如锰、硅和铝等,从而避免了气孔的发生。虽然焊丝没有药皮,但在不用时,也需妥善保管,最重要的一点是要确保焊丝干净。如果把焊丝随便堆放,它将会受到灰尘、油、湿气、打磨飞灰以

21、及其它存在于焊接车间介质的污染。因此,在不用时,焊丝必须贮存在原塑料包装或原运输包装内,如果一卷焊丝已经装在焊机上,American Welding Society & Moody International 9 of 36 Module 3当较长时间不用时,应加盖保护。气体保护电弧焊的电源与手工电弧焊的电源不同,它不是恒流电源,而是我们所说的恒压电源、或平特性电源,也就是说,气体保护电弧焊的焊接是在设定的电压下,通过焊接过程中电流的变化来完成的。 气体保护焊通常采用直流反接(DCEP),当用这种类型的电源和送丝机构配合时,就可以组成半自动、机械或全自动的焊接方法。图 3.12 给出了典型的气

22、体保护焊设备配置。正如所看见的那样,这种设备较手工电弧焊所使用的设备要复杂一些。一个完整的配置包括电源、送丝机构、保护气体以及通过柔性电缆连接在送丝机构上的焊枪,这根柔性电缆可以焊丝和保护气体。焊工可以通过在电源上调节电压,在送丝机构上调节送丝速度,以来设置焊接参数。当送丝速度增加,焊接电流也随之增加。焊丝的熔化率与焊接电流成适当的比例,这实际上是由送丝速度所控制的。值得一提的是这种电源是平特性电源。图 3.13 给出了典型的 V-A 曲线。图上的曲线不是平的实际上有一点轻微的下降。这种特性允许实现半自动工艺功能,也就是说焊工不必象手工电弧焊焊工那样控制填充金属的送进。换句话说,这种系统被称为

23、“自调节平特性”系统。这种特性是因为焊枪与工件的相对位置的微小变动会引起焊接电流的明显的增大或减小。从图 3.13 中可以看见,当焊枪靠近工件时会使电阻减小从而使焊接电流立刻增大,立刻将焊丝多熔化一些,使电弧长度和电流恢复到设定值。这减小了焊工操作对焊接特性的影响,使该方法对操作人员不敏感,因此操作容易掌握。如果改变设备的调节机置,将导致操作特性的极大变化。首先所关注的是熔化金属从电极端部穿过电弧区到达母材的过渡方式。对于气体保护焊,有四种基本的过渡方式,它们是射流过渡、熔滴过渡、脉冲过渡和短路过渡。American Welding Society & Moody International

24、10 of 36 Module 3图 3.14 给出了四种过渡方式中的三种。它们的特性完全不同以至几乎认为是四种独立的焊接方法。每种特定的过渡方式都有特定的优点和局限,因此有不同的适用范围。过渡方式由包括保护气体、电流和电压以及电源特性在内的若干因素决定。这四种不同的过渡方式的一个基本特性就是向工件传送不等的热量。射流过渡被认为热量最高,接下来是脉冲过渡、熔滴过渡,最后是短路过渡。因而,在平焊位置,射流过渡最适合厚板以及全焊透接头。熔滴过渡能产生大量的热量以及熔敷金属,但操作稳定性略有下降,容易产生飞溅。脉冲气体保护焊要求焊接电源能够产生直流脉冲输出,并且焊工能够准确地对脉冲进行程控,使峰值电

25、流和基值电流进行组合,从而增加对热输入和工艺稳定性的控制。焊工能够对峰值脉冲电流的值和宽度进行设置。这样在焊接过程中,焊接电流能够在峰值脉冲电流和基值脉冲电流之间变换,并且,二者均可以通过焊机进行控制。短路过渡向母材传送的热量最少,这使得它成为薄板焊接和由于装配导致的间隙过宽的接头焊接的首选。短路过渡方式具有冷却的特性,这是因为电极实际上与母材接触,在焊接循环中产生部分短路。这样电弧是间歇地产生和消失。在电弧消失的这段期间,会发生冷却现象从而减小薄板材料烧穿的倾向。短路过渡用于厚板焊接时必须特别小心,因为热量不足容易产生未熔合。正如所提及的那样,保护气体对过渡方式有着重要的影响作用。在混合气体

26、中,只有在至少 80%氩气含量的情况下,射流过渡才能产生。CO 2气体广泛的用于碳钢的气体保护焊,这主要是因为其低廉的成本和优异的熔透特性。然而,它仍有缺点,这就是要产生大量的飞溅,而这些飞溅必须去除,因而降低了生产效率。这种工艺的多样性使它在许多工业应用中得到采用。GMAW 能够有效地应用于许多种类的铁基金属和非铁基金属的连接或搭接。用保护气体来代替容易受到污染的焊剂,能够减少将氢带入焊接区域的可能性,因而,GMAW 能够成功用于由于氢的存在而出现问题的情况。由于没有焊后必须去除的焊渣,GMAW 非常适合自动化和机器人焊接,或其它高效生产情况。这是这种工艺的主要优点之一。由于焊后极少或没有清

27、理要求,操作人员总的生产效率得到极大的提高。这个效率由于使用焊丝盘而得到进一步的提高,连续的焊丝不需要象使用单根焊条的手工电弧焊那样经常更换。所以节约下来的时间可以用于完成更多的焊接生产。GMAW 的主要优势在于每小时的金属熔敷量,这极大地降低了劳动力成本。气体保护焊的另一个优势在于它是一种干净的工艺,这主要归功于没有使用焊剂。在通风不良的车间会发现,从手工电弧焊或药芯焊换成气体保护焊后情况会得到改善,这是因为烟的产生减少了。由于有各种各样的焊丝可选用,而且焊接设备变的更便于携带,气体保护焊的适用领域不断得到扩展。该工艺的另外一个优点是可见性。因为没有焊渣,焊工能够很容易地观察电弧和熔池的情况

28、,从而改善控制。使用保护气体代替焊剂,确实会得到一些好处,但同样被认为是有局限的,这是因为气体是焊接过程中保护和清洁熔池的主要方法。如果母材过脏,单靠保护气体不足以避免气孔的产生。GMAW 还对气流和风特别敏感,它们会将保护气体吹开,留下未保护的金属。正是这个原因,气体保护焊不大适合工地焊接。应充分认识到,气体流量大于推荐值的上限,并不能保证对熔池适当的保护。实际上,大的气体流量反而导致气体紊乱,并增大气孔产生的可能性,这是因为增大气体流量实际上可能将空气带入焊接区。另一个缺点是设备要求比手工电弧焊的设备复杂。这增加了由于机械故障而导致焊接质量问题的可能性。诸如焊枪内衬和导电嘴的磨损会改变送丝

29、和电特性从而产生有缺陷的焊缝。主要的问题已经讨论过。他们是:由于污染或保护不良产生的气孔,厚板焊接采用短路过渡产生的未熔合,焊枪衬里和导电嘴磨损而产生的电弧不稳定。虽然这些问题对焊接质量非常有害,但如果采取了预防措施,它们是能被减轻的。American Welding Society & Moody International 11 of 36 Module 3为了减少气孔产生的可能性,焊前应对部件进行清理,并用围栏或屏风保护焊接区域避免过强的风。如果气孔仍然存在,就应当检查所用的气体,以保证不存在过量的潮气。未熔合的确是 GMAW 的一个问题,特别是采用短路过渡时。这有一部份的原因是因为这种

30、焊接工艺没有使用焊剂, 是一种“明弧焊” , 。由于没有了焊剂对电弧热量的保护,所以容易使焊工认为母材中有高大量的热量。这是一种误觉,所以,焊工必须明白这种情况并确保电弧能熔化母材。最后,设备应得到良好的保养,以减轻诸如送丝不稳定所造成的问题。每次更换送丝轮时,应当用干净的压缩空气吹扫内衬,清除可能产生阻塞的微粒。如果送丝仍有问题,就应当更换内衬。导电嘴应定期更换。导电嘴磨损后,接触点发生了变化,使焊丝伸长量增加,然而焊工并不知道。焊丝伸长量是导电嘴到焊丝端部的距离,参见图 3.15。药芯焊丝电弧焊(FCAW)下一种介绍的工艺是药芯焊丝电弧焊。它与气体保护焊非常相似,差别在药芯焊丝焊采用的是管

31、状焊丝,其中装有粒状的焊剂,而不是气体保护焊所用的实芯焊丝。其差别可以从图 3.16 中看到,图中给出了采用自保护药芯焊丝焊焊接的工件和焊接过程中电弧区域的特写。图中显示管状的焊丝通过焊枪中的导电嘴送进,并在焊丝和工件之间产生电弧。随着向前焊接而熔敷焊缝金属,和手工电弧焊一样,在焊缝金属上覆盖着一层焊渣。根据使用的焊丝类型不同,可以对药芯焊附带或不附带额外的保护气体。有些焊丝被设计成靠内部焊剂提供所有需要的保护,它们被称为自保护性。其它的焊丝要求附加的保护气体提供附加的保护。同其它焊接工艺一样,FCAW 有一个系统用于标识各种类型的焊丝,见图 3.17。查阅所有类型的焊丝会发现,它规定了极性,

32、保护要求,化学成分和焊接位置。American Welding Society & Moody International 12 of 36 Module 3标识以字母”E”开头表示焊丝。第一位的数字表示焊缝熔敷金属的抗拉强度,单位是 10000 磅/英寸 2,如“7”表示焊缝熔敷金属的抗拉强度至少为 70,000psi.第二个数字是“0”或“1” 。 “0”表示这种焊丝只适用于平焊或角焊缝的横焊,而“1”说明该焊丝可用于所有位置。接下来的一位是字母“T” ,它表示管状焊丝。然后是一横线和一个数字,数字表示按焊缝熔敷金属化学成分进行的特定分类,电流类型,极性,是否需要保护气体,以及其它用于分类

33、的特定信息。根据这个标识系统,能够对焊丝是否需要附加保护气体进行明确分类。这对焊接检验师十分重要,因为药芯焊丝在有或没有额外保护气体的情况下均可焊接。图 3.18 是两种类型的焊枪。一些焊丝分类为可以在只有自保护,没有附加保护的情况下使用。这些焊丝使用后缀数字3,4,6,7,8,10,11,13 和 14 表示。而另外一些焊丝用后缀数字 1,2,5,9 或 12 表示要求额外的保护来辅助保护熔化的金属。根据应用情况,两种类型的焊丝均能提供优良的性能。另外,后缀 G 和 GS 分别表示多道焊和单道焊。例如,自保护型焊丝更适用于工地焊接,在工地,风会引起保护气体的流失。气体保护型的焊丝主要用于需要

34、改善焊缝金属性能的地方,但这会增加成本。药芯焊丝焊气体包括 CO2 或 75%氩气+25%CO2,但其它的混合气体也可适用。FCAW 使用的设备与 GMAW 的基本一致,参见图3.19。所不同的是 FCAW 可能需要更高容量的焊枪和电源,对于自保护型焊丝和送丝机构,不需要附带保护气体装置。和 GMAW 一样,FCAW 使用平特性直流电源。根据所使用的焊丝类型,使用直流反接(DCEP)(1,2,3,4,6,9,12)或直流正接(DCEN)(7,8,10,11,13,14)或二者均可(DCEP,DCEN)(5)。药芯焊丝焊工艺由于被一些工业应用所选用而迅速得到认可。它在污染表面上的良好表现和高熔敷

35、效率帮助 FCAW 在一些应用中取代了 SMAW 和 GMAW。药芯焊工艺在工业应用中主要用于铁基金属。在车间焊和工地焊应用中均能获得满意的效果。虽然药芯焊丝主要适于铁基金属制造(碳钢和不锈钢) ,一些非铁基金属也能的到很好的应用。American Welding Society & Moody International 13 of 36 Module 3一些不锈钢焊丝实际上是用碳钢外皮包裹着焊剂,焊剂中含有诸如铬、镍的颗粒状元素。FCAW 获得广泛的认可,是因为它能提供优良的性能。可能最重要的优点是它能提供很高的生产效率,即单位时间内所熔敷的焊缝金属量。它是手工焊接工艺中效率最高的。这是由

36、于焊丝盘提供连续不断的焊丝,同 GMAW 一样增加了电弧时间。该工艺还被分类为大熔深弧焊,这有助于减少熔合性缺陷的可能性。由于该方法主要用于半自动工艺,其操作技能要求远低于手工方法的要求。无论有无保护气体的辅助,FCAW 因有焊剂,它比 GMAW 对母材污染有更大的容许。正是这个原因,使得 FCAW 适合工地焊接,在现场,风使得保护气体流失,而 GMAW 会受到极大的影响。然而,检验师应当明白该工艺有它的局限。首先,由于有焊剂,所以在后序焊道焊接前和外观检查前必须去除这层固体焊渣。由于存在焊剂,在焊接过程中会产生大量的烟。长时间暴露在没有通风条件的地方会危害焊工的健康。这些烟还会降低焊工的视线

37、,会给接头中的电弧正确操作带来困难。虽然可以采用烟雾抽除系统,但要在焊枪加上附件,这会增加其重量并降低焊工的视线。当采用附加保护气体时,它还会扰乱保护气氛。即使 FCAW 被认为是有烟工艺,但它在单位熔敷金属时产生的烟量没有 SMAW 多。FCAW 所要求的设备比 SMAW 的复杂,因而其先期成本和机械故障的可能性限制了它在一些环境中的使用。和所有的工艺一样,FCAW 自身存在一些问题。首先是于焊剂有关。由于焊剂的存在,在层间清理不当或操作技术不当时,会有焊渣残留在焊缝金属中的可能性。对于 FCAW,至关重要的是焊接速度要足够快,以保持电弧在熔池的前缘。当焊接速度太慢,使电弧在熔池的中前部或后

38、部,熔化的焊渣会被卷入熔池中形成夹渣。另一个自身的问题与送丝机构有关。与 GMAW 情形一样,缺少保养维护会导致焊丝送进问题,这会影响焊缝的质量。FCAW 同样产生包括未焊透、夹渣和气孔在内的典型缺陷。钨极氩弧焊(GTAW)下一种介绍的工艺是钨极氩弧焊,与其它已经讨论过的焊接方法相比,有许多有趣的不同。图3.20 显示出该工艺的基本要素。GTAW 最重要的特性是电极在焊接过程中不会消耗。它采用纯钨或钨合金制造,具有承受高温的能力,甚至是电弧的高温。因而,当电流通过时,就在钨极和工件之间建立起电弧。当需要填充金属,必须额外添加,通常采用手工方式,或采用机械送丝系统。电弧和金属采用惰性气体保护,这

39、些气体从包围着钨极的喷嘴中流出。因为没有使用焊剂,熔敷金属不需要清渣。同其它方法一样,有一个系统使各种类型的钨极容易辩识。这个标识由一系列的字符组成,American Welding Society & Moody International 14 of 36 Module 3它以字符“E”开头表示电极。接下来的字母“W”是钨的化学符号。然后是字符的数字,它们表示合金类型。由于只有 5 种不同的类型,它们通常使用颜色系统来区分。表中给出了分类和对应的颜色代码。AWS 钨极分类 氧化钍或氧化锆的加入可帮助电极改善电特性,类别 合金 颜色 其结果是使钨极的发射能力地到轻微的提高。简单的EWP 纯钨

40、 绿 说,就是氧化钍或氧化锆型的钨极比纯钨更容易起EWCe-2 1.8-2.2%铈 橙 弧。纯钨在加热时有形成“球”端的能力,所以经常EWLa-1 1%镧 黑 用于铝焊接。和尖形钨极相比,球形钨极具有较低的EWLa-1.5 1.5%镧 金 电流集中,从而减小了钨极损坏的可能性。EWTh-2 钨EWLa-2 2%镧 蓝 极是铁基金属焊接中最常用的电极。EWTh-1 0.8-1.2%钍 黄 用于 GTAW 的填充材料标识采用“ER”作前缀,EWTh-2 1.7-2.2%钍 红 后接化学成分。外购实心光焊丝的长度一般是 36 EWZr 0.15-0.40 锆 褐 英寸,并在两端作有标识。GTAW 可

41、以采用直流反接 DCEP,直流正接 DCEN 或交流 AC。直流反接 DCEP 将在电极上产生较多的热量,而直流正接 DCEN 则在工件上产生更多的热量。交流 AC 则在电极和工件之间变换热量。交流 AC主要用于铝焊接,这是因为电流的变换会提高清洁作用,从而提高焊接质量。直流正接 DCEN 通常用于钢的焊接。图 3.21 显示不同电流和极性的效果,包括熔深、氧化物的清洁作用、电弧的热量分配和电极的电流承载能力。上面提到,GTAW 使用惰性气体作为保护气体。所谓惰性,我们是指这种气体不会和金属发生反应,但可以保护金属免受污染。氩气和氦气是两种用于 GTAW 的惰性气体。一些机械化的不锈钢焊接生产

42、,使用由氩气和少量的氢气组成的保护气体,但这在钨极氩弧焊应用中只占极的一部分。GTAW 的设备其主要电源部分如同 SMAW 的设备一样,采用陡降特性的电源。由于使用气体,需要有设备来控制和传送气体。图 3.22 显示出钨极氩弧焊设备的典型配置。该焊接系统新增的特征,在图中没有给出,是配备了一个高频发生器,它协助起弧。为了在焊接过程中改变热量,可能还需要附加电流遥控装置,这个控制器可以是脚控或是通过安装在手把上的其它装置。它American Welding Society & Moody International 15 of 36 Module 3特别适用于需要进行即时控制的运用场合,如薄板焊

43、接和带有根部间隙的管子接头。GTAW 在许多工业领域有着广泛的应用。它能焊接几乎所有的材料,因为电极在焊接过程没有熔化。它具有在极低电流情况下焊接的能力,使得钨极氩弧焊可用于极薄材料的焊接(薄至 0.005 英寸)。它特有的清洁和操作可控特性,使它成为苛刻条件下应用的首选,这些应用如太空、食品和药品加工,石化和动力管道工业。GTAW 的主要优势在于它焊出的焊缝具有很高的质量和优异的外观质量。同样,由于没有焊剂,该方法非常干净,不需要焊后清理焊渣。如前所说,能焊接极薄的材料。由于它的特性,它适合焊接几乎所有的金属,而其中的大部分材料采用其它的焊接方法会很不容易。如果设计允许,这些材料的焊接可以不

44、用填充材料。在需要时,有各种类型的丝状填充材料可用于各种合金材料。万一某种特定的合金材料,市场上又没有可选用的焊丝,那么可以简单地从这种母材上剪一块,作成窄条状当作焊丝,用手工方法送入焊接区。与其优点相对,它还是有一些缺点。首先,GTAW 是所有可选用的焊接方法中最慢的。在它产生干净的焊缝熔敷时,它却对污染的容许程度很低。所以,焊前必须对母材和填充材料进行认真的清理。当采用手工方法,GTAW 要求很高的技能水平;焊工必须协调一只手控制电弧而另一只手随之送进填充材料。GTAW 通常被选择用于需要高质量保证的地方,而增加的成本能抵消这些限制。该方法其中的一个缺点就是它对污染很敏感。如果遇到污染或潮

45、气,无论来自母材、填充材料或是保护气体,都将可能在熔敷焊缝上引起气孔。当发现气孔,就意味着工艺失控,需要进行一些保护措施的检查。检查可以确定污染的来源,从而消除污染。另一个 GTAW 特有的内在缺点是夹钨。顾名思义,这种缺陷是由于钨极上的小块熔入焊缝金属中。夹钨的产生有很多原因,主要的列在下表中。夹钨产生的原因(1) 钨极端部和熔化金属接触;(2) 填充材料与热电极端部接触;(3) 电极端部被飞溅污染;(4) 电流过大超过了电极规格和型号的限制;(5) 电极伸出夹头过大,超过了正常的距离,导致电极过热;(6) 电极夹头夹紧不当;(7) 保护气体流量不当或过大的风导致电极端部氧化;(8) 电极有

46、缺陷,如开裂、裂纹;(9) 使用了错误的保护气体;和(10) 电极端部打磨不当。埋弧焊(SAW)American Welding Society & Moody International 16 of 36 Module 3最后一个所讨论的常用焊接方法是埋弧焊。这种方法是目前所提及的在焊缝金属熔敷效率上最高的一种典型焊接方法。SAW 用实芯焊丝连续送进,焊丝产生的电弧完全被颗粒状的焊剂层所覆盖;因而被命名成“埋弧”焊。图 3.23 显示该工艺是如何形成焊缝的。正如所提到的,焊丝送进到焊接区域的方式与气体保护焊和药芯焊丝焊非常一致。而最大的差别是保护方式。对于埋弧焊工艺,颗粒状焊剂被置于焊丝的前

47、部或周围来实现对熔化金属的保护。在焊接过程中,在焊道上有一层渣渣和仍然为颗粒状的焊剂。焊渣清除后通常被丢弃,虽然有技术能在一些应用中,将一部分焊渣和新焊剂混合回用。如果小心作好了防污染措施,颗粒状的焊剂是可以回收回用。在某些情况下如果对焊剂的清洁度要求非常高,那么不推荐焊剂回用。范例F7A6-EM12K 是一个完整的标识。它表示这是一种和焊丝 EM12K 配合使用,焊缝金属具有在焊态下抗拉强度不小于 70,000psi(480Mpa),却贝 V 型冲击韧性在-60 F(-51C)的温度下不小于 20ft-lb(27J)。F7A4-EC1 是一个完整焊剂的标识同时也标识了配合使用的焊丝牌号。这种

48、焊剂用于焊缝金属具有在焊态下抗拉强度不小于70,000psi(480Mpa),却贝 V 型冲击韧性在 40F(-40C)的温度下不小于 20ft-lb(27J)。图 3.24-埋弧焊定义系统表示焊剂根据所给定的焊接条件,在所示焊剂焊丝的匹配下,焊缝金属的最小拉伸强度,以 10,000psi 递增。表示试验时的热处理状态:A 为焊态,P 为焊后热处理态。焊后热处理的时间及温度按规定。表示焊缝金属的冲击强度能够达到或超过 20ft-lb(27J)的最低温度。E 指的是实芯焊丝;EC 指的是复合焊丝L(低),M(中)或 H(高)锰含量,或 C(复合焊丝)用于生产上述焊缝的焊丝的类别F X X X - E XXXAmerican Welding Society & Moody International 17 of 36 Module 3由于 SAW 的焊丝和焊剂是各自分开的,所以在一个特定的应用中会有多种组合可选用。对

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报