收藏 分享(赏)

2018年内蒙古包头市高三第一次模拟考试数学(文)试卷(解析版).doc

上传人:cjc2202537 文档编号:679684 上传时间:2018-04-18 格式:DOC 页数:14 大小:951KB
下载 相关 举报
2018年内蒙古包头市高三第一次模拟考试数学(文)试卷(解析版).doc_第1页
第1页 / 共14页
2018年内蒙古包头市高三第一次模拟考试数学(文)试卷(解析版).doc_第2页
第2页 / 共14页
2018年内蒙古包头市高三第一次模拟考试数学(文)试卷(解析版).doc_第3页
第3页 / 共14页
2018年内蒙古包头市高三第一次模拟考试数学(文)试卷(解析版).doc_第4页
第4页 / 共14页
2018年内蒙古包头市高三第一次模拟考试数学(文)试卷(解析版).doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、2018 年普通高等学校招生全国统一考试(包头市第一次模拟考试)文科数学一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合 , ,则 ( )A. B. C. D. 【答案】A【解析】 由题意,集合 ,则 ,故选 A2. 设复数满足 ,则 ( )A. B. C. D. 【答案】B【解析】 由题意复数满足 ,则 ,所以 ,故选 B3. 函数 图象的一条对称轴是( )A. B. C. D. 【答案】C【解析】 由函数 ,令 ,解得 ,即函数 图象的一条对称轴是 ,故选 C4. 已知向量 , .若 与平行,则 ( )A.

2、B. C. D. 【答案】D【解析】 由向量 , ,则 ,因为向量 与平行,则 ,解得 ,故选 D5. 在平面直角坐标系 中,直线 为双曲线 的一条渐近线,则该双曲线的离心率为( )A. B. C. D. 【答案】C【解析】 由题意,双曲线 的渐近线方程为 ,又直线 是双曲线的一条渐近线,所以 ,所以 ,故选 C6. 若 ,且 ,则 的最小值为( )A. B. C. D. 【答案】D【解析】 由题意,作出约束条件所表示的平面区域,如图所示,目标函数 ,可化为 ,由图可知,当直线 过点 时,得到目标函数的最小值,由 ,解得 ,则目标函数的最小值为 ,故选 D7. 某多面体的三视图如图所示,则该多

3、面体的体积为( )A. B. C. D. 【答案】C【解析】 由题意知,根据给定的三视图可知,该几何体的左侧是一个底面为等腰直角三角形,且腰长为 ,侧棱长为 的直三棱柱,右侧为一个底面为等腰直角三角形,且腰长为 ,高为 的三棱锥,所以该几何体的体积为 ,故选 C8. 已知函数 ,则错误的是( )A. 在 单调递增B. 在 单调递减C. 的图象关于直线 对称D. 的图象关于点 对称【答案】D【解析】 由函数 ,可得函数满足 ,解得 ,又函数 ,设 ,其开口向下,且对称轴为 ,所以函数 在 上单调递增,在 上单调递减,根据复合函数的单调性可得 在 上单调递增,在 上单调递减,且函数 的图象关于直线

4、 对称,故选 D9. 某学生食堂规定,每份午餐可以在三种热菜中任选两种,则甲、乙两同学各自所选的两种热菜相同的概率为( )A. B. C. D. 【答案】B【解析】 由题意,甲同学选的两种热菜有 种,两同学选的两种热菜有 种,所以甲、乙两同学各自所选的两种热菜共有 种,其中甲、乙两同学各自所选的两种热菜相同共有 种情况,甲、乙两同学各自所选的两种热菜相同的概率为 ,故选 B10. 执行如图所示的程序框图,如果输入的 ,则输出的 ( )A. B. C. D. 【答案】B【解析】 模拟执行程序,可得 ,执行循环体, ;满足条件 ,执行循环体, ;满足条件 ,执行循环体, ;满足条件 ,执行循环体,

5、 ;满足条件 ,执行循环体, ;满足条件 ,执行循环体, ;此时不满足条件 ,退出循环,输出 的值 ,故选 B点睛:算法时新课程的新增加的内容,也必然是新高考的一个热点,应高度重视,程序填空与选择是重要的考查和命题方式,这种试题考查的重点有:条件分支结构;循环结构的添加循环条件;变量的赋值;变量的输出等,其中前两点是考试的重点,此种题型的易忽略点是:不能准确理解流程图的含义而导致错误11. 现有 张牌( 1) 、 (2) 、 ( 3) 、 (4) ,每张牌的一面都写上一个数字,另一面都写上一个英文字母。现在规定:当牌的一面为字母 时,它的另一面必须写数字 .你的任务是:为检验下面的 张牌是否有

6、违反规定的写法,你翻且只翻看哪几张牌就够了( )A. 翻且只翻(1) (4) B. 翻且只翻(2) (4)C. 翻且只翻(1) (3) D. 翻且只翻(2) (3)【答案】A【解析】 由题意,当牌的一面为字母 时,它的另一面必须写数字 ,则必须翻看(1)是否正确,这样(3)就不用翻看了, 后面不能是 ,要查(4) ,所以为了检验如图的 中是否违反规定的写法,翻看( 1) (4)两种牌即可,故选 A点睛:本题考查了归纳推理,对于合情推理主要包括归纳推理和类比推理数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向合情推理仅是“合

7、乎情理”的推理,它得到的结论不一定正确而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下)12. 过抛物线 : 的焦点 的直线交抛物线 于 , 两点,且 ,则原点到的距离为( )A. B. C. D. 【答案】C【解析】由抛物线 的焦点 , 设直线的方程为 ,由 ,则 ,所以 ,根据抛物线的定义可知 ,解得 ,当 时,直线的方程为 ,所以原点到的距离为 ,当 时,直线的方程为 ,所以原点到的距离为 ,所以原点到直线的距离为 ,故选 C点睛:本题考查了抛物线的定义,点到直线的距离公式及直线与抛物线的位置关系的应用,其中对于直线与圆锥曲线问题,通常通过联立直线方程与椭圆(圆锥曲线)方程的方

8、程组,应用一元二次方程根与系数的关系,进而求解问题,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等二、填空题:本题共 4 小题,每小题 5 分,共 20 分. 13. 若 , ,则 _【答案】【解析】 由余弦函数的倍角公式,可得 14. 已知 为奇函数,当 时, ,则曲线 在点 处的切线方程为_【答案】【解析】 由题意,当 时,则 ,因为函数 为奇函数,所以 ,所以当 时, ,所以 ,即切线的斜率为 ,所以在点 的切线方程为 ,即 15. 在正方体 中, 为棱 的中点,有下列四个结论: ; ; .其中正确的结论序

9、号是_ (写出所有正确结论的序号) 【答案】【解析】 由题意,在正方体 中,中,连接 ,在 中, ,所以 与 不垂直,所以不正确;中,连接 ,在 中, 不是直角,所以 与 不垂直,所以不正确;在正方体 中, 平面 ,而 平面 ,所以不正确;在正方体 中, 平面 ,而 平面 ,所以 是正确的,故选正确命题的序号为 点睛:本题主要考查了线面位置关系的判定与证明,解答中主要涉及到线面垂直的判定定理及面面垂直的判定定理,属于中档题证明线面垂直的常用方法:利用线面垂直的判定定理;利用面面垂直的性质定理 同时注意垂直关系的相互转化,本题全面考查立体几何中的证明与求解,意在考查学生的空间想象能力和逻辑推理能

10、力;16. 在 中,内角 , , 的对边分别为, , ,已知 ,则 _【答案】【解析】 由题意,因为 ,由正弦定理得 ,即,所以即 ,即 ,所以 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 1721 题为必做题,每个试题考生都必须作答

11、.第 22,23 题为选考题,考生根据要求作答.(一)必考题:共 60 分17. 已知正项等比数列 的前 项和为 ,且 , .(1)求数列 的通项公式;(2)设 ,求数列 的前 项和 .【答案】 (1) ;(2) .【解析】试题分析:(1)由题意求得首项和公比,则数列 的通项公式为 ;(2)结合(1)的结果错位相减可得 .试题解析:(1)设正项等比数列 的公比为 ,若 ,则 ,不符合题意;则 , 解得: (2) 得:点睛:一般地,如果数列a n是等差数列,b n是等比数列,求数列 anbn的前 n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列b n的公比,然后作差求解18. 如图

12、,四棱锥 中, 底面 , , , , 为线段上一点, , 为 的中点.(1)证明: 平面 ;(2)求四面体 的体积.【答案】 (1)见解析;(2) .【解析】试题分析:(1)由已知,取 的中点 ,连接 , ,得到 ,利用线面平行的判定定理,即可得到 平面 .(2)由四面体 的体积 ,即可求解三棱锥的体积试题解析:(1)由已知得 ,取 的中点 ,连接 , ,由 为 的中点知 , ,又 ,故 ,所以四边形 为平行四边形,于是 ,平面 , 平面 ,所以 平面 .(2)四面体 的体积 .取 的中点 ,连接 .由 得 ,从而 ,且 .所以点 到平面 的距离为 .而 为 的中点,所以 到平面 的距离为 .

13、又 .所以 .19. 从某食品厂生产的面包中抽取 个,测量这些面包的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组频数(1)在相应位置上作出这些数据的频率分布直方图;(2)估计这种面包质量指标值的平均数 (同一组中的数据用该组区间的中点值作代表) ;(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于 的面包至少要占全部面包 的规定?”【答案】 (1)见解析;(2) ;(3)见解析.【解析】试题分析:(1)根据题设中的数据,即可画出频率分布直方图;(2)利用平均数的计算公式,即可求得平均数 ;(3)计算得质量指标值不低于 的面包所占比例的估计值,即可作出

14、判断试题解析:(1)画图.(2)质量指标值的样本平均数为.所以这种面包质量指标值的平均数的估计值为 .(3)质量指标值不低于 的面包所占比例的估计值为,由于该估计值大于 ,故可以认为该食品厂生产的这种面包符合“质量指标值不低于 的面包至少要占全部面包 的规定.”20. 已知 , 是椭圆 : 的左右两个焦点, ,长轴长为 ,又 , 分别是椭圆上位于 轴上方的两点,且满足 .(1)求椭圆 的方程;(2)求四边形 的面积.【答案】 (1) ;(2 ) .【解析】试题分析:(1)由题意,求得 的值,进而由 ,得到 的值,即可求得椭圆 的方程;(2)设 , ,由 ,得 ,设直线 的方程为 ,代入椭圆方程得,求得 ,求得 的值,进而求解四边形的面积试题解析:(1)由题意知 , ,所以 , .所以 ,椭圆 的方程为 .

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 教育学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报