1、第 10 章 机械波10.1 机械波振动物体在一定的平衡位置附近的往返运动称为机械振动。10.1.1 简谐振动的描述1、简谐振动方程在光滑的水平面上,质量不计的轻弹簧左端固定,右段与质量为 m 的物体相连,构成一个震动系统,物体为弹簧振子。物体所受的弹簧弹力的方向始终指向平衡位置,称为回复力。有胡克定律可知F=-kx弹簧振子的位移与时间关系的形式为x=Acos(t+) 于是,把这种运动参量随时间按正弦或余弦函数规律变化的振动,叫做简谐振动,式子称为简谐振动方程。由位移,速度和加速度的微分关系可得,简谐振动物体的速度 v 和加速度 a 分别为V=dx/dt=-Asin(t+)a=(dx)2/d(
2、x2)=-2Acos(t+)简谐振动物体的位移随时间的变化曲线,称为振动曲线。2、震动的特征物理量(1) 振幅 A:指振动物体离开平衡位置的最大位移。(2) 周期 T,频率 V 与圆周率 W:物体完成一次全振动所经历的时间为振动周期,用 T 表示;单位时间内物体所做的完全振动的次数为振动频率,用 V 表示;单位时间内物体所做的完全振动的次数的 2 倍为圆周率,用 W 表示,国际单位是 rad/s.三者关系为 :=1/T, T=2 /, W=2 。(3) 相位和初相位 A= 2/0VX =arctan(-0)/(x0)3、旋转矢量沿着逆时针方向匀速振动矢量 A 代表了一个 X 方向的简谐振动,这
3、个矢量称为旋转矢量。 4、简谐振动的能量整个振动系统的能量应包括弹簧振子的振动能量 Ek 和震动引起的弹性能量Ep.设弹簧振子在平衡位置的势能为 0,他的任意时刻的是能与动能为Ek=1/2kx2=1/2m2A2(cos(t+)2Ep=1/2kx2=1/2m2A2(sin(t+)2则系统能量为E=Ek+Ep=1/2mw2A2=1/2kA2简谐振动的总能量是守恒的,在振动过程中动能与势能相互转换。10.1.2 受迫振动和共振实际物体的振动都是非简谐振动。在周期外力作用下进行的振动称为受迫振动。如果物体或建筑在外界驱动下做受迫振动,当驱动力频率 W 接近或等于物体或建筑的 Wd 时,其受迫振动的振幅
4、更大,这种现象叫做共振。共振条件 =d。但是,不论 d 还是 d 时,物体或建筑的振幅就都比共振时小得多。共振的弊端。10.1.3 机械波的形成机械振动在弹性介质中传播形成机械振动。10.2 机械波的描述10.2.1 机械波的分类与特征物理量1、机械波的种类横波:媒质的振动方向与波动的传播方向相垂直的机械波,称为横波。纵波:弹簧上各处的振动方向与震动传递的方向是平行的,这种机械波称为纵波。2、机械波的特征物理量(1)波长 :在波的传播方向上两个相邻的振动完全相同的质点之间的距离。(2)周期 T:波传播一个波长所需的时间。(3)频率 :单位时间内传播的完整波形的数目。(4)波速 u:单位时间内波
5、动传播的距离,则有 u=/T 或 u=V 机械波在不同的介质中的传播速度不同,波速取决于介质的特性,弹性波的波速取决于介质的密度及弹性模量两个因素。3、机械波的几何描述波线:波的传播方向带箭头的线。波面:不同波线上相位相同的点所构成的曲面。波前:处于最前面的波面。 (一列博波的波面有任意多个,但波前只有一个)平面波:波面是平面的机械波。球面波:波面是球面的机械波。波面与波线相互垂直。10.2.2 平面简谐波的波函数简谐振动在介质中传播而形成的机械波,称为简谐波,当波源做简谐运动在均匀,无吸收的介质中传播而形成的简谐波,称为平面简谐波。1、波函数Y=Acos2 (t/T-x/)+ 可以代表波动区
6、域内中所有质点的运动,该式称为简谐波的波函数。定义 k=2/, 则可以改为 y=Acosk(ut-x)+ 沿 Ox 轴正向传播的波动,称为右行波 ,若波动沿轴 OX 轴负方向传播,称为左行波,其波函数应为: y=Acosw(t+x/u)+2、波图形质点介质位置为横坐标,指点的振动位移为纵坐标,可作出在不同时刻所有质点的位移曲线,称为波形图。3、波的能量在波动传播的区域,播的能量应该包括媒质中所有质点的振动动能和弹性介质的形变势能,可以证明在 dV 体积的媒质中,波动的总能量为 dW=(dV)A2*w2(sin(t-x/u)2)2 波动的能量不守恒,波动是能量传递一种形式。随着波动的传播,能量也
7、不断从振源向介质中传递,若要维持波动,就必须不停地给振源补充能量。10.2.3 地震产生的波动汶川地震10.3 机械波的传播规律10.3.1 衍射现象与惠更斯原理当机械波遇到带小孔或小缝等障碍物后,波动后可以继续在障碍物后的区域传播,这种现象称为波的衍射现象。介质中波动传到各点都可以看做是发射子波的波源,在其后的任意时刻,这些波的包络就是新的前波,这成为惠更斯原理。10.3.2 衍射现象与波的叠加1、播的干涉现象在波的传播过程中,当频率相同,振动方向相同和相位差恒定的两列水波相遇时,在交叠区域,某些地方振动始终加强,而另一些地方振动始终减弱,从而使水面出现稳定的,规则的,凹凸的图样。这种现象称
8、为干涉现象。当频率相同,振动方向相同和相位差恒定的波源,称为相干波源。2、波的叠加原理当几列机械波相遇时,相遇区域中任一点振动为各列波单独存在时在该点引起的振动位移的矢量和。相遇后,它们任然保持各自原有的特征不变,并按原来的方向继续前进,好像没有遇到过其他波一样。3、干涉的相长,相消条件S1 和 S2 为相干波源,他们激发的机械波的波函数分别为y1=A1cos(t-(2x/)+1)y2=A2cos(t-(2x/)+2)两列波传播到 P 点时,引起的 P 点振动为:y=y1+y1=Acos(t+)则 P 的合振幅为 2121AA*(cos)(1/2)其中 为想干波在 P 点的相位差,且 =2-1
9、-2(r2-r1)/因此,相干波引起的合振动的振幅和相位差都不随时间变化,干涉图样是稳定的。P 点振动的初相位 为=arctan(A1sin(1-2r1/)+A2sin(2-2r2/)/(A1cos(1-2r1/)+A2cos(2-2r2/)(1)=2k(k=0,1,2,.) 时,A=A1+A2,想干区域中对应点的振幅始终最大,这种现象称为干涉相长。(2)当=(2k+1)(k=0,1,2,.) 时,A= 21A,想干区域中对应点的振幅始终最小,这种现象称为干涉相消。若 2=1,有 =2(r2-r1)/ (1) 当波程差 = r2-r1=2k( /2)时,干涉加强,称为干涉相长条件。(2) 当波
10、程差 = r2-r1=( k+1) (/2)时,干涉减弱,称为干涉相消条件。(3) 相位差 或波程差 介于以上两种情况之间的点,合振动的振幅则介于振幅最大值和这幅最小值之间。10.3.3 驻波现象及应用入射波与反射波的叠加,在弦线上可以观察一种波形不随时间变化的波动,称为驻波。当驻波出现时,弦线上有些点始终静止,称为波节;有些点的振幅始终最大,称为波腹。1、驻波方程y=y1+y2=2Acos(2x/)cost 该式称为驻波方程。其中,)2cos(A视为驻波振幅。2、相位突变形成驻波时如果反射处为波节,则反射波与入射波相波相比,相位发生了 的变化,这种现象称为相位突变。由于 的相位差相当于半个波
11、长的波程差,于是相位突变也称为“半波损失” 。3、驻波应用1 弦线上的驻波2 空气中驻波3 管弦乐器的工作原理10.4 声波10.4.1 声波的特征与种类1、声波的特性(1)声速:声音在介质中的传播速度。(2)声音三要素 音色,音调,响度。2、声强与声强级声强为单位时间内通过垂直于声波传播方向的单位面积的声波能量,也称为声波的能留密度。任意声波的强度 I 与人类能听到的最弱声音 I0 的比值的对数量,为声波的声强级,以 L 表示。3、次声波与超声波频率小于 20Hz 的低频声波称为次声波:(1)波长长,频率低,大气对次声波的吸收少,传播距离远。(2)穿透能力强,能够穿透建筑物或金属壳。频率大于 20000Hz 的声波称为超声波:(1)方向性强,只沿直线传播。(2)能量大,且易于集中使用。10.4.2 多普勒效应当声源与观察者之间存在着相对运动时,观察者所收到的波源频率与波源的实际频率有所不同,有时频率会升高,有时频率会降低,这种现象称为声波的多普勒效应。1、波源与观察者相向运动2、波源与观察者相离运动10.4.3 多普勒效应雷达与多普勒彩超1、多普勒雷达多普勒雷达是利用多普勒效应进行定位,测速,测距等工作的雷达。2、多普勒彩超彩超是将声波的多普勒效应应用于影像诊断的一种手段,彩超其实是高清晰度的黑白 B 超加上彩色多普勒效应。