收藏 分享(赏)

数学建模思想在数学变式教学中的应用毕业论文.doc

上传人:无敌 文档编号:649633 上传时间:2018-04-16 格式:DOC 页数:16 大小:1.27MB
下载 相关 举报
数学建模思想在数学变式教学中的应用毕业论文.doc_第1页
第1页 / 共16页
数学建模思想在数学变式教学中的应用毕业论文.doc_第2页
第2页 / 共16页
数学建模思想在数学变式教学中的应用毕业论文.doc_第3页
第3页 / 共16页
数学建模思想在数学变式教学中的应用毕业论文.doc_第4页
第4页 / 共16页
数学建模思想在数学变式教学中的应用毕业论文.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、贵州民族学院毕业论文题 目 数学建模思想在数学变式教学中的应用 系 别 数学与计算机科学系 专 业 数学与应用数学 姓 名 甘小飞 指导教师 结稿日期 2015 年 9 月 8 日第 0 页共 14 页数学建模思想在数学变式教学中的应用甘小飞贵州民族学院数学与计算机科学系摘要:本文将探讨如何将数学建模思想融入数学变式教学,并提出将数学建模思想融入数学变式教学中是数学教学行之有效的方法之一。文中通过引入典型简化的数学模型,力求达到反馈知识本质,高度概括问题的基本规律,提高学生的学习兴趣与学习效率。关键词:数学建模;变式教学Abstract: In this thesis, I will stud

2、y how to make mathematical modeling thought merge into variable teaching of mathematics, then I will put forward that it is one of the effective methods in mathematical teaching. This article will study the typical simplified mathematical modeling, trying to get the feedback of the essence of knowle

3、dge and over generalize the basic disciplines of problems. In this way, it may improve students study interests and learning efficiency. Keywords: mathematical modeling; variable teaching 数学建模是数学学习的一种新方式,它以现实生活的真实问题为背景,将数学与现实、其他学科联系起来,为学生提供了更加丰富的学习空间。它能使学生运用所学,自主地、创造性地用自己的方式解决问题,体验到数学学习的价值。更重要的是,数学建

4、模能培养学生“主动”用数学解决实际问题的意识。传统的数学教学单纯的重复训练,消磨了学生的思想、智慧、个性和独立的创新能力。变式教学中引入数学建模思想可以使学生结合多变问题情境,提高学生的认知能力和概括同类问题的能力,让学生在变化中总结规律,提高学习效率。1 如何将数学建模思想融入数学变式教学中首先, 数学教师要更新教学观念,提高自己的数学建模意识和改革教学方法。将数学建模思想融入变式教学,不是用“数学模型”或“数学实验”课的内容抢占变式教学阵地,关键是渗透数学建模思想。这不仅仅意味着我们在教学内容和要求上的变化,更意味着教学思想和教学观念的更新。数学第 1 页共 14 页教师除需要了解数学科学

5、的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论知识来提高自身的建模素养。其次,在变式教学过程中,要循序渐进的给学生灌输“构造”思想,培养学生的建模意识。 “数学建模”就是构造模型,但模型的构造并不是一件容易的事,因此,在变式教学中,要让学生学会建模就需要从一些容易的实际问题出发,让他们有获得成功的机会,享受成功的喜悦,增加学生的信心,从而提高学生发现问题、解决问题的能力,进而培养学生的数学建模能力。教师在变式教学的过程中要重视数学思想方法和应用数学的教学,引导、培养学生用数学建模思想方法解决应用问题的能力。最后,在变式教学中,要万变不离其宗,无论如何变,模型就是宗,就是宏观;变

6、中始终保持宏观模型。要把握数学建模思想嵌入的时机,学生学习知识的主战场是课堂,因此,要把数学建模思想融入到变式教学中,数学建模思想就应从课堂的教学内容切入,把培养学生的应用意识落实到平时的教学中。从教学内容出发,联系实际,以教材为载体,把课堂问题由“问答”变化为“问题的设计分析问题、构造模型 解决问题应用” 1。2 赏析常见的几种数学模型和数学变式。2.1 一题多解变式、函数的最值模型所谓一题多解变式:就是对同一数学问题运用所学知识从不同的角度和方法提出不同的解题构想和方法。例 1 甲乙两地相距 S 千米,汽车从甲地匀速行驶到乙地,速度不得超过 C 千米小时,已知汽车每小时的运输成本(以元为单

7、位)由可变部分和固定部分组成:可变部分与速度 V 的平方成正比,比例系数为 b,固定部分为 a 元 2。( I ) 把全程运输成本 y(元)表示为速度 v(千米小时)的函数,并指出函数的定义域。(II) 为了使全部运输成本最小,汽车应以多大速度行驶?分析:此题主要考察的是二次函数的最值求解,二次函数的最值求解一般可以利用函数的单调性、求导、以及函数的对称性进行求解。要求二次函第 2 页共 14 页数的最值,我们得回顾二次函数的图像、性质、特别是函数的周期性和对称性,熟悉这些,并能解决这个问题。解法一: (I) 依题意,每小时运输成本为( )元,全程的行驶时间 2bva为 (时) ,所以全程运输

8、成本为 ,其中,v 的取值vs )()(2ssy范围是(0,c. 即所求的函数及其定义域为 , v(0,c. )(ba(II) 依题意 s 、a、 b、 v 都是正数,故,absy2.)(当且仅当 ,即 时,上式取等号,所以有:vba若 ,则当 时,全程运输成本最小;cb若当 时,则有 ,因此,当 时,ba2ca,0(cva,b 都是正数,因此, )(bvasy)()(cvs)()(bcas)()(cvv第 3 页共 14 页0)()2vcsbbcv当且仅当 时,上式取等号,即得当 时 y 取最小值。cv综上得:为了使全程运输成本最小,当 时,汽车应以速度 babav行驶,当 时,汽车应以 行

9、驶。cbacv解法二:(I)因为全程的行驶时间为 (时) ,所以每小时的运输成本 vs为 ,依题设, ,因此所求函数为 ,abvsy2 c0 )(vabsy定义域为 .,0(c(II) 记 ,vabvf)(则当 时,c210)(21vff)()(2121vba)(21121bav)(2121 cvv若 ,即 时,2cbaba第 4 页共 14 页因为 0,0)(2121 cbavvb所以 ,)(21ff即 在 上式减函数,当且仅当 时, 取最小值,从而)(vf,0cv)(vf也在此时取最小值。y若 即 时,则对任意 都有:2cbaba,0(cv)(fvf)(bavbav,0)(2v当且仅当 时

10、,上式取等号。ba即得为了使 (从而 y)取最小值, 应取为 .)vf vba综合起来可知:为了使全程运输成本 y 最小,汽车的行驶速度 应取 cv和 这两个数中较小的值 2。 ba设计意图:此题可以让学生从不同角度、不同侧面去思考和探索问题,加深对知识内涵、外延的理解,以求在变化中拓宽思想、激发思维,使之从单一化、 固定化模式中转入多棱化、多角化和多面化模式,从而获得上升性思维能力。第 5 页共 14 页2.2 条件变式、函数的单调模型所谓条件变式:是指教师引导学生针对某一题目的条件进行合理的变化,从而得到一组变式题目组,并通过对这一类题目的分析解决,使学生掌握该类题目的题型结构从而达到深入

11、认识题的本质,提高解决题目的能力。例 2 若函数 的单调递减区间为 ,求实数 a 的取值23)(axf )2,0(范围 3。例 3 如函数 在区间 上单调递减,求实数 a 的取值)(3xf ),(范围 3。分析:“单调递减区间为 ”与“在区间 上单调递减”是两个)2,0()2,0(截然不同的问题情境。因此在做此类题目时,要让学生辨析这两种不同叙述的含义,在短时间内能够很快的完成问题的求解。解 (1) 23)(axxff2令 ,即 , 0)(xf axx2203当 时,解得 ,aa函数 的减区间为 ,23)(xf )(a又函数 的单调减区间为 ,af 20则 ,)()2,0所以 ;4a当 时,函

12、数 ,恒成立.00)(xf第 6 页共 14 页当 时,函数 不存在单调减区间;0a23)(axf当 时,函数 恒成立,0f 时,函数 不存在单调减区间.0a23)(axf综上所述,若函数 单调区间为 ,则 。 f )2,0(4a解 (2)函数 在区间 上单调递减23)(axf ),(在区间 上恒成立0xf),(在区间 上恒成立3)(2af 2,0在区间 上恒成立x2),(在区间 上的最大值小于等于 ,23,0a3即 , .a14设计意图:此题旨在锻炼学生的审题能力和对数学语言精确性和严密性的考察。 “函数在某区间内单调”和“函数的单调区间是某区间“,前者说明所给区间是函数单调区间的子集,后者

13、说明所给区间恰好是函数的单调区间。因此在解题过程中一定要养成认真审题的好习惯。2.3 结论变式、数列模型所谓结论变式:是指保留题意中的条件,提出探索性结论,目的在于发展学生的创造思维,加深对知识的理解和灵活运用。例 4 已知数列 是等差数列, nb 145,1032bb设数列 的通项为 , (其中 且 ) , 记 na)(lognanbans是数列 的前 n 项和,试比较 与 的大小 4。 n s1log3na第 7 页共 14 页分析: 此题主要考察学生对等差数列的定义、通项、性质、求和方面等知识以及对数函数的性质的掌握程度,要比较 与 的大小,ns1log3nab就得知道 关于 n 的函数,因此,首要任务就是求出通项公式 和前 n 项s和 。n解 数列 是等差数列,设数列 的公差为 d,nbnb又 ,110321bb1450)(1db;)231784512(loglog)l231(31nsbandban anan 31log)(ll3baana要比较 与 的大小,1lognans可先比较 与 大小,237845231取 时,有 成立;1n

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 学术论文 > 管理论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报