1、数学文化摘要:数学文化博大精深,数学和其他科学一样,是人类共同的精神财富,数学是人类智慧的结晶。它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。本文首先浅谈我对数学文化的认识,然后谈一下数学的发展,最后谈谈数学的文化价值。关键字:数学文化 文化价值 发展 三次数学危机。1 数学文化之我见汉克尔曾说数学科学的特点是:高度的抽象性,体系的严谨性,应用的广泛性,发展的延续性。我懂得数学的高深,想来我没有足够的能力去深入的解读去体味,因而高考没有选数学专业。现在又有一次机会让我可以接触数学,领悟数学和数学家的神奇,美妙,毫不犹豫的选了数学文化,对数学的
2、很多感受现在可以通过这次机会表达一二。数学和其他科学一样,是人类共同的精神财富,数学是人类智慧的结晶。它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多
3、学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类
4、知识文化宝藏中,数学思想和方法却一直延续发展了几千年,表现出了强大的生命力。数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。数学不仅研究客观世界的数量关系和空间形式,而且也研究它自
5、己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。2 成长与磨砺数学的发展写关于数学文化不得不写数学的发展。数学是人类最古老的科学知识之一,它主要是研究现实生活中数与数、形与形,以及数与形之间相互关系的一门学科。他们发展
6、也经历的很多的坎坷,在磨砺中他也得以不断的成长。首先是数学的萌芽阶段,在这一时代的杰出代表是古巴比伦数学、中国数学、埃及数学、印度数学等。古埃及文化可追溯到公元前 4000 年,在那里,公元前 3200 年就已有了统一的国家。公元前2900 年,开始建筑金字塔,就金字塔的建筑来讲,已经具备一些初等几何的知识;巴比伦文化可以上溯到公元前 2000 年左右的苏美尔文化,这一时期,人们基于对量的认识,经建立了数的概念。从大约公元前 1800 年开始,巴比伦已经使用较为系统的以 60 为基数的数系;另一个重要的是古希腊数学,希腊文化在世界文明史上的贡献是至高无上的。它广泛的吸取了其他文明中的有价值的东
7、西,创立了自己的文明与文化,对西方文明乃至世界文明的发展起了重要作用;同时,在中亚和东方也创造了灿烂的数学文化。自公元前 8世纪起,印度已有一些丰富的数学知识。中国数学是世界数学史中的瑰宝,在仰韶文化中,已经出土的陶器上已刻有用 |,| ,|,|等表示 1,2,3 ,4 的记号。西安半坡出土的陶器中就有用圆点堆成的三角形或正多边形。然后是常数学阶段,这时期,数位希腊数学家取得辉煌成就,在 2000 年时间内,希腊人创造的文明一直延续到牛顿时代。M.克莱因在评价希腊人的几何原本和圆锥曲线时说:“从这些精心撰述的著作中,我们看得出此前三百年间数学上的创造性工作,或此后数学史上关系重大的一些问题。
8、”说道希腊时代的辉煌,不得不提到希腊璀璨的数学家们。毕达哥拉斯,曾被人们认为是一个神秘主义者,据说他“十分之一是天才,十分之九是纯粹的呓语者。 ”他把证明引入了数学,这也是他最伟大的功绩之一。毕达哥拉斯还提出了抽象,抽象引发了几何的思辨,从实物的数与形,抽象到数学上的数与形,本身就把数学推向科学的开始。在希腊数学时期还有芝诺的四个简单悖论,这四个简单悖论震惊了哲学界。在希腊数学里最主要的工作精华和最大的光荣落在了欧几里德和阿波罗尼奥斯的头上。欧几里德撰写的几何原本是古希腊数学的集大成,它充分发挥了希腊哲学的优势,借助演绎推理,展现给人们一个完整的典范的学科系统。它从定义、公设、公理,一步一步,
9、由远及近,由表及里地推证出大量丰富的结果。阿波罗尼奥斯的突出工作是圆锥曲线论 , 圆锥曲线论的杰出工作,几乎将圆锥曲线的所有性质开采殆尽,以至使后代许多几何学工作者至少是在笛卡尔之前的近 2000 年间,不敢对此再有发言权。后人提到评价圆锥曲线,评价阿波罗尼奥斯,就联想到我国李白登黄鹤楼时,看到崔颢诗后的“眼前有景道不得,崔颢题诗在上头”的那样一种心情。还有阿基米德的得意之作论球与圆柱 ,也是数学上的杰作。与此同时,在东方是中国,这一时期也是数学文化最辉煌的时代,它与希腊的数学文化呈现出一种交相辉映的繁荣局面。中国著作九章算术给出了三元一次方程组的解法,同时在世界历史上第一次使用负数,叙述了对
10、负数进行运算的规则,也给出了求平方根和立方根的方法。然后就进入了变量数学建立时期,有笛卡尔著作几何学 ,以及牛顿和莱布尼兹创立的微积分,这些都推进了数学的进步,在数学发展史上是很重要的一个里程碑。在大一的时候就学了微积分,微分及其中的变量、函数和极限等概念,运动、变化等思想,是辩证法渗入了全部数学:并使数学成为精确表述自然科学和技术的规律及有效地解决问题的有力工具。最后是现代数学时期,其中比较突出的问题是高于四次的代数方程的根式求解问题、欧几里德几何中平行线公设的证明问题和微积分方法的逻辑基础问题。代数、几何、分析领域中这些问题得以研究和解决,数学学科的分支得以迅速发展。顺着时间的发展将数学史
11、大概说了下,现在我想特意说说在数学史上出现的三次数学危机。第一次数学危机:由毕达哥拉斯提出的著名命题“万物皆数”和“一切数均可表成整数或整数之比” 。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数2 的诞生。小小2 的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微
12、积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。 罗素悖论与第三次数学危机:十九世纪下半叶,康托尔创立了著名的集合论, 1903 年,英国数学家罗素提出著名的罗素悖论。罗素构造了一个集合 S:S 由一切不是自身元素的集合所组成。然后罗素问:S 是否属于 S 呢?根据排中律,一个元素或者属于某个集合,或者不属于某个
13、集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果 S 属于 S,根据 S 的定义,S 就不属于 S;反之,如果S 不属于 S,同样根据定义,S 就属于 S。无论如何都是矛盾的。罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动,引起的巨大反响则导致了第三次数学危机。 3 浅谈数学的文化价值3.1 数学:思维的工具 数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此
14、同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测
15、。这就是运用抽象思维去把握现实的力量所在。其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑
16、的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。 3.2 数学:打开科学大门的钥匙 科学史表明,一些划时代的科学理论成就的出现,无一不借助于数学的力量。早在古代,希腊的毕达哥拉斯学派就把数看作万物之本源。享有“近代自然科学之父”尊称的伽利略认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。物理学家伦琴因发现了 X 射线而成为 1910 年开始的诺贝尔物理奖的第一位获得者。当有人问这位卓越的实验物理学家科学家需要什么样的修养时,他的回答是:第一是数学,第二是数学,第三
17、还是数学。对计算机的发展做出过重大贡献的冯诺依曼认为“数学处于人类智能的中心领域”。他还指出:“数学方法渗透进支配着一切自然科学的理论分支,它已愈来愈成为衡量成就的主要标志。 ” 科学家们如此重视教学,他们述说的这些切身经验和坚定的信念,如果从哲学的层次来理解,其实就是说,任何事物都是量和质的统一体,都有自身的量的方面的规律,不掌握量的规律,就不可能对各种事物的质获得明确清晰的认识。而数学正是一门研究“量”的科学,它不断地在总结和积累各种量的规律性,因而必然会成为人们认识世界的有力工具。马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。 ”这是对数学作用的深刻理解
18、,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。3.3 数学:充满理性精神 数学犹如一棵正在成长着的大树,它是不断发展和丰富着的理论知识体系。数学充满着理性精神,它不断为人们提供新概念、新方法。有的数学家说:“数学在人类历史中的地位绝不亚于语言、艺术和宗教,今天数学正对科学和社会产生着翻天覆地的影响。 ”(注:美L.A.斯蒂恩主编 今日数学第 26 页,上海科技出版社 1982年版。 ) 数学对于人类理性精神发展有着特殊的意义,这也清楚地说明数学作为整个人类文化的一个有机组成成分的重要性。正如克莱因指出的:“在最广泛的意义上说,数学是一种精神,一种理性的精神。正是这种精神,试图决定性地影响人类的物质、道德和社会生产;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。 ”