1、24.2.1 相似图形的性质【 学情分析】初三学生思维能力、计算能力及理解能力已经上了一个层面,因此应该容易理解成比例线段的定义,并判断四条线段是否成比例【学习内容分析】本节通过实例让学生总结归纳出成比例线段的定义,通过例题 1 的解析学会判断四条线段是否成比例,并得出“比例的基本性质”,利用它进一步进行一些较为简单 的比例变形。【学习目标】1、 掌握线段的比,成比例线段等基本概念,判断四条线段是否成比例2、 掌握比例的基本性质,能运用比例的基本性质推导出比例的其余性质。3、在归纳、推理的过程中发展合情的推理能力。【重难点预测】重点:理解成比例线段的定义,并会判断四条线段是否成比例难点:掌握比
2、例的基本性质,能运用比例的基本性质推导出比例的其余性质。【学习过程】+【学法指导】一、学习目标1、 掌握线段的比,成比例线段等基本概念,判断四条线段是否成比例2、 掌握比例的基本性质,能运用比例的基本性质推导出比例的其余性质。二、 自学指导 按照指定的顺序和相应内容完成自学:1、 成比例线段(6 分钟+3 分钟)(1) 阅读 P38“试一试”、“概括 ”的内容,完成填空:两条线段的比指的是这两条线段 的的比,它一定是数(填“正”或“负”) 。注意:求“两条线段的比”时,要注意统一单位,其结果没有单位,与所采用的长度单位也没有关系。练习 1:P42 练习 1(1) 、2(可写在书本上)填空 1(
3、1): _ _ _CDACBADBC(2) 阅读 P39 “例 1”,在练习本上完成 P40 练习 1(3) 在练习本上完成 P43 习题 24.2 第 2、4 题2、 比例的基本性质(5 分钟+2 分钟)(1) 若 (或 ),则_dcbadc:证明: _(2) 若 ( ),则_ca0,都 不 等 于证明 : _bcad_bcad(3) 问题 1:以上两个命题是_关系;3、 比例的其它性质:(6 分钟+4 分钟)(1) 阅读 P39-40 “例 2”,完成 P40 练习 3 _, _2bab_ba_(2)尝试完成填空:请证明:当 = 时,可得:hgfedcbak kbahfdbgec证明: =
4、 f _,_, gecbka khfdbkhfdbhfdge _ kafbca用以上方法完成 P40 练习 3是否还有更简单的方法解类似的问题?-特值代入法!三、合作学习,展示学习成果(激发冲突)【整理学案】1、 (1)两条线段的比与所采用的长度单位没有关系,在计算时注意统一单位;(2 )线段的比是一个没有单位的正数; 2、对于四条线段 a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 ,那么,这四条线段叫做成比例线段,简称比例线段。ab cd3、比例尺4、比例的基本性质及应用【达标测 评】必做题P43 习题 3 选做题 P43 习题 7思考题 P43 习题 8,同步练习册 P39【教与学反思】我的收获:我的疑问: