1、GMSK 调制与解调算法研究摘要:随着现代通信技术的发展,移动通信技术得到快速发展,许多优秀的调制技术应运而生,其中高斯最小频移键控(GMSK)技术是无线通信中比较突出的一种二进制调制方法,它具有良好的功率谱特性和较好的抗干扰性能,特别适用于无线通信和卫星通信,目前,很多通信标准都采用了 GMSK 技术,例如,GSM,DECT 等。本文首先介绍了 MSK 的一般原理,接着对 GMSK 的调制原理和几种调制方法进行了阐述,然后,重点研究了 GMSK 的几种差分解调方法并进行了比较,最后用 Matlab 软件进行仿真及结果分析。关键词:高斯最小频移键控;调制;差分解调;MatlabIThe stu
2、dy of GMSK modulation and demodulation algorithmAbstract:Along with the development of the communication technology, the mobile communication technology has been developing rapidly. A lot of excellent modulation technology has emerged as the times require, Gaussian Minimum frequency shift keying(GMS
3、K)is one of the most outstanding technology in radio communication. It is especially used in radio and satellite communication for its nice spectrum characteristic and anti-jamming capability. At present , many communication system has employed the GMSK, for instance, the GSM, DECT. In this paper ,
4、the MSK which is the base of GMSK was introduced firstly, and then the modulation principle and methods of GMSK was analyzed, and the several differentially demodulation methods of GMSK was studied and compared emphatically, Finally using Matlab software simulate and results analysis.KeyWords:Gaussi
5、an Minimum Shift Keying;Modulation;Differential Demodulation;MatlabII目 录第一章 绪 论 11.1 选题的依据及意义 .11.2 国内外研究现状及发展趋势 .11.3 本课题研究内容 .1第二章 MSK 调制与解调原理 22.1 MSK 的基本原理 .22.2 MSK 的调制解调原理 .4第三章 GMSK 调制 .63.1 GMSK 调制的一般原理 63.2 GMSK 信号的产生 8第四章 GMSK 解调 .94.1 一比特差分检测 .94.2 二比特差分检测 10第五章 实验仿真结果及分析 135.1 GMSK 调制与 M
6、SK 调制的性能比较 .135.2 两种差分解调的误码率比较 145.3 GMSK 调制仿真实验图 .145.4 一比特差分解调仿真波形 16第六章 总 结 17参考文献(References) 18致 谢 .192第一章 绪 论1.1 选题的依据及意义调制是移动通信系统中提高通信质量的一项关键技术,调制是为了使信号特性与信道特性相匹配。现代移动通信系统大多数使用的是数字调制技术,这主要是由于数字通信网建网灵活,并且数字加密技术便于集成化。因此,通信系统都在由模拟方式向数字方式转换,这也是移动通信的发展趋势。但是,一般的数字调制技术,如振幅键控(ASK) 、频移键控(FSK)和相移键控(PSK
7、)等都无法满足移动通信的要求。因此,寻找性能优越的高效调制方式以适应现代移动通信的要求,一直是重要的研究课题。尽管 MSK 具有包络恒定、占用相对较窄的带宽和能进行相干解调的优点,并且功率谱在主瓣以外衰减较快。但是,在移动通信中,对信号带外辐射功率的限制十分严格,一般要求必须衰减 70dB 以上。由于 MSK 信号仍不能满足这样的要求,因此,针对上述要求,提出了高斯最小频移键控(Gaussian Filtered Minimum Shift Keying,GMSK) 。GMSK 调制方式能满足移动通信环境下对邻道干扰的严格要求,它以其良好的性能而被泛欧数字蜂窝移动通信系统(GSM)所采用。数字
8、调制解调技术是数字峰窝移动通信系统空中接口的重要组成部分。GMSK 是从 MSK(最小移频键控)发展起来的一种技术。MSK 调制实际上是调制指数为 0.5 的二进制调频,具有包络恒定、占用相对较窄的带宽和能进行相干解调的优点。但是 MSK 的带外辐射较高,影响了频谱效率。为了抑制带外辐射、压缩信号功率,可在 MSK 调制器前加入预调制滤波器。GMSK 调制是在 MSK 调制器之前插入高斯低通预调制滤波器这样一种调制方式 1。1.2 国内外研究现状及发展趋势随着现代通信技术的发展,移动通信技术得到快速发展,许多优秀的调制技术应运而生,其中 GMSK 技术是无线通信中比较突出的一种二进制调制方法,
9、它具有良好的功率谱特性和较好的抗干扰性能,特别适用于无线通信和卫星通信,目前,很多通信标准都采用了 GMSK 技术,例如,GSM,DECT 等 2。l979 年由日本国际电报电话公司提出的 GMSK 调制方式有较好的功率频谱特性,较忧的误码性能,特别是带外辐射小,很适用于工作在 VHF 和 UHF 频段的移动通信系统,越来越引起人们的关注。在我国数字通信系统中,全数字接收机已经得到了广泛的应用。利用数字化方法设计通信系统中的调制解调技术是实际应用中的一项重要技术。最小高斯频移键控(GMSK)是一种典型的连续相位调制方式,具有包络恒定、频谱紧凑、抗干3扰能力强等特点,可有效降低邻道干扰,提高非线
10、性功率放大器的效率,已在移动通信(如 GSM 系统)、航天测控等场合得到广泛应用。1.3 本课题研究内容在本论文中,首先介绍 GMSK 的基础 MSK 的基本原理,接着对 GMSK 的调制原理进行阐述,然后,重点研究了 GMSK 的差分解调,对解调中的一比特检测算法和二比特差分检测算法的解调性能进行对比,并用 MATLAB 软件对 GMSK 的调制解调进行了仿真,对仿真结果作了详细分析,最后进行论文总结。第二章 MSK 调制与解调原理2.1 MSK 的基本原理在一个码元时间 Tb内,CPFSK 信号可表示为 3-4sCPFSK(t)=Acos ct+ (t) (2.1)当 (t)为时间连续函数
11、时,已调波在所有时间上是连续的。若传 0 码时载频为1,传 1 码时载频为 2,它们相对于未调载频 c 的偏移为 ,则式(2.1)又可写为sCPFSK(t)=Acos ct (0) t(2.2)其中2120(2.3)比较式(2.1)和式(2.2)可以看出,在一个码元时间内,相角 (t)为时间的线性函数,即(t)= (0) t(2.4)式中, (0)为初相角,取决于过去码元调制的结果。它的选择要防止相位的任何不连续性。对于 FSK 信号,当 2 Tb=n(n 为整数)时,就认为它是正交的。为了提高频带利用率, 要小,当 n=1 时, 达到最小值,这时有4Tb= 2(2.5)或者 2 Tb= fh
12、1(2.6)其中,h 称为调制指数。由式(2.6)看出,频偏 =1/(4Tb) ;频差f2 =1/(2Tb) ,它等于码元速率的一半,这是最小频差。所谓的最小频移键控f(MSK) ,正是取调制指数 h=0.5,在满足信号正交的条件下,使频移 最小。f利用式(2.5)和式(2.6) ,式(2.4)又可写为(t)= 02tb(2.7)为了方便,假定 (0)=0,同时假定“+”号对应于 1 码, “”号对应于 0 码。当时,在几个连续码元时间内, (t)的可能值示于图 2.1 中。传 1 码时,相0t 位增加 /2;传 0 码时,相位减少 /2。当 t=Tb 时,式(2.7)可写为码 时, 传 码
13、时, 传 0210bT(2.8)图 2.1 MSK 信号相位轨迹图 2.1 中正斜率直线表示传 1 码时的相位轨迹,负斜率直线表示传 0 码时的相位轨迹。这种由可能的相位轨迹构成的图形称为相位网格图。在每一码元时间5内,相对于前一码元载波相位不是增加 /2,就是减少 /2。在 Tb 的奇数倍上取 /2 两个值,偶数倍上取 0、 两个值。例如,图中粗线路径所对应的信息序列为 11010100。若将式(2.7)扩展到多个码元时间上,则可写为kbPTt2(2.9)其中,P k为二进制双极性码元,取值为 1; 为截矩,其值为 的整数倍,即k;k 为整数。这表明,MSK 信号的相位是分段线性变化的,同时
14、在码元转nk换时刻相位仍是连续的,所以有 )()(1bkbkT或者 21kPkk(2.10)现在,将式(2.9)代入式(2.1) ,便可写出 MSK 波形的表达式kbcMSKPTtAts2os)((2.11)利用三角等式并注意到 ,有0sinkttqtiAtTtaTtats cc cbQbIMSKsin)(os)(c sin2i2 (2.12)其中, 。kqkibqbi PtataTtaTtta cos)(;cos)(;2sin)(;2cos)( 式(2.12)即为 MSK 信号的正交表示形式,其同相分量ttixcis)(也称为 i 支路;其正交分量为 ttqcsin6也称为 q 支路; 称为
15、加权函数。bTt2sin下面我们简要讨论一下 MSK 信号的功率谱。对于由式(2.11)定义的 MSK 信号,其单边功率谱密度可表示为2cos)(168)(22 bcbcMSK TfTffP)( (2.13)根据式(2.13)画出 MSK 信号的归一化功率谱密度如图 2.2 所示。为了便于比较,图中还画出了 2PSK 信号的功率谱。图 2.2 MSK 信号的归一化功率谱由图 2.2 可看出,与 2PSK 相比,MSK 信号的功率谱更加紧凑,其第一个零点出现在 0.75/Ts 处,而 2PSK 的第一个零点出现在 1/Ts 处。这表明,MSK 信号功率谱的主瓣所占的频带宽度比 2PSK 信号的窄
16、;当(f-fc)时,MSK 的功率谱以(f-fc)-4的速率衰减,它要比 2PSK 的衰减速率快得多,因此对邻道的干扰也较小。2.2 MSK 的调制解调原理根据式(2.12) ,我们可以画出 MSK 调制器的方框图如图 2.3 所示。7图 2.3 MSK 调制器方框图MSK 信号的产生过程如下:(1)对输入数据序列进行差分编码;(2)把差分编码器的输出数据用串/并变换器分成两路,并相互交错一个比特宽度 Tb;(3)用加权函数 和 分别对两路数据进行加权;bTt2cosbtin(4)用两路加权后的数据分别对正交载波 和 进行调制;tcostcin(5)把两路输出信号进行叠加。MSK 信号属于数字
17、频率调制信号,因此可以采用一般鉴频器方式进行解调,其原理图如图 2.4 所示。鉴频器解调方式结构简单,容易实现。输入 输出图 2.4 MSK 鉴频器解调原理图由于 MSK 信号调制指数较小,采用一般鉴频器方式进行解调误码率性能不太好,因此在对误码率有较高要求时大多采用相干解调方式。图 2.5 是 MSK 信号相干解调器原理图,其由相干载波提取和相干解调两部分组成。BPF 鉴频器 LPF 抽样判决8图 2.5 MSK 信号相干解调器原理图9第三章 GMSK 调制3.1 GMSK 调制的一般原理MSK 调制是调制指数为 0.5 的二进制调频,其基带信号为矩形波形。为了压缩 MSK 信号的功率谱,可
18、在 MSK 调制前加入高斯型低通滤波器,称为预调制滤波器。对矩形波形进行滤波后,得到一种新型的基带波形,使其本身和尽可能高阶的导数连续,从而得到较好的频谱特性。GMSK 调制原理方框图如图 3.1 所示 5。输出图 3.1 GMSK 调制原理方框图为了有效地抑制 MSK 的带外辐射并保证经过预调制滤波后的已调信号能采用简单的 MSK 相干检测电路,预调制滤波器必须具有以下特点 6:(1)带宽窄并且具有陡峭的截止特性;(2)冲激响应的过冲较小;(3)滤波器输出脉冲面积为一常量,该常量对应的一个码元内的载波相移为 /2。其中,条件(1)是为了抑制高频分量;条件(2)是为了防止过大的瞬时频偏;条件(
19、3)是为了使调制指数为 0.5。高斯低通滤波器的传输函数为)exp()(2fafH(3.1)式中, 是与高斯滤波器的 3dB 带宽 有关的一个常数。由 3dB 带宽定义有abB21)(2(3.2)即 12)exp(bBa(3.3)所以587.02ln1ba(3.4)由此可见,改变 将随之改变。bBa,滤波器的冲激响应为预调制滤波器MSK调制器102exp)(tath(3.5)由式(3.5)看出, 不是时限的,但它随 按指数规律迅速下降,所以可)(t 2t近似认为它的宽度是有限的。由于它的非时限性,相邻脉冲会产生重叠。由式(3.1)式(3.5)可以看出 GMSK 滤波器可以利用 3dB 基带带宽
20、 和基bB带码元间隔 完全定义。因此,习惯使用 与 的乘积来定义 GMSK。注意,MSKbTbBT信号等价为 与 的乘积为无穷大的 GMSK 信号。B如果输入为双极性不归零矩形脉冲序列 :)(tsnnbaTts1,)((3.6)式中, 其 他, ,021)(bbtt其中, 为码元间隔。高斯预调制滤波器的输出为bTnbTtgathstx)()()((3.7)式中, 为高斯预调制滤波器的脉冲响应:)(tg 2/ 22/ exp1)(1)( bb TT dadhhtb (3.8)GMSK 信号的表达式为 dTngaTttst bbcGMSK 22os)((3.9)式中, 为输入数据。na高斯滤波器的
21、输出脉冲经 MSK 调制得到 GMSK 信号,其相位路径由脉冲的形状决定,或者说在一个码元内已调波相位的变化取决于其间脉冲的面积。由于高斯滤波后的脉冲无陡峭沿,也无拐点,因此,其相位路径得到进一步平滑,如图113.1 所示 3。图 3.1 GMSK 信号的相位路径由于相邻脉冲间有重叠,因此,在决定一个码元内的脉冲面积时,要考虑相邻码元的影响。这样,在不同的码流图案下,会使一个码元内脉冲面积不同,因而对应的相位路径也不同。3.2 GMSK 信号的产生产生 GMSK 信号最简单的方法是数据流经高斯滤波后直接对 VCO 调频,如图 3.2所示。但该方法要保持 VCO 中心频率稳定存在一定困难。克服此
22、方法缺点的办法是采用锁相环路(PLL)调制器,如图 3.3 所示。图中,输入数据序列先进行/2 相移 BPSK 调制,然后将该信号通过锁相环对 BPSK 信号的相位突跳进行平滑,使得信号在码元转换时刻相位连续,而且没有尖角。该方法实现 GMSK 信号的关键是锁相环传输函数的设计,以满足输出信号功率谱特性要求 9。图 3.2 GMSK 信号产生器图 3.3 PLL 型 GMSK 调制器由式(3.9) ,GMSK 信号可以表示为正交形式,即tttttts cccGMSK sin)(ios)()(os)( (3.10)式中 dTgaTtt bnb22)((3.11)由式(3.10)和式(3.11)可
23、以构成一种波形存储正交调制器,其原理图如12图 3.4 所示。波形存储正交调制器的优点是避免了复杂的滤波器设计和实现,可以产生具有任何特性的基带脉冲波形和已调信号。图 3.4 波形存储正交调制器产生 GMSK 信号第四章 GMSK 解调4.1 一比特差分检测 7在接收端,调制后的 GMSK 信号经过数字下变频后恢复成 I、Q 两路信号后,可以运用一比特差分检测进行解调。根据 1 比特差分检测算法找出在一比特周期内接收到的信号在相位方面的改变量。这种相位方面的改变量可以用式(4.1)表示:tTtbdth)(2)((4.1)通过式(4.1)我们可以知道 的值没有超过 ,所以在一比特周期内相位)(t
24、bT可能改变的最大值 。2)(maxt如果 )()()(tjreAtjQtIz(4.2)式(4.2)中的 是接收到信号矢量的幅值,信号相位的改变量rA)()(bTtzimgttD(4.3)D(t)表示解调的波形。对接收到的 I 路和 Q 路分量的基带信号通过 A/D 转换器后,可以使用 DSP 来实现对其采用一比特差分检测算法。通过一比特差分检测算法,我们可以找出传输的码元,在一比特周期时间内的相位改变量。这种相位的改变量可以表示为:)()(bTtt(4.4)13式(4.4)可以用图 4.1 所示的原理来实现:图 4.1 一比特差分检测当 的值大于或等于零时,接收到的数据是“1” ;当 的值小
25、于零时,)(t )(t接收到的数据是“0” 。采用一比特差分检测算法的 GMSK 信号解调框图如图 4.2 所示:图 4.2 GMSK 信号解调框图由于一比特差分检测算法原理简单,软件编程时容易实现,故本次设计在GMSK 信号的解调中采用的是一比特差分检测算法 8。4.2 二比特差分检测二比特延迟差分检测器框图如图 4.3 所示 7。图 4.3 二比特延迟差分检测器框图如图 4.3 所示,当采用 2bit 差分解调时,中频滤波器输出首先通过硬限幅电路消除振幅的变化,再与经过 2 时延的信号相乘,相乘后的输出信号为:bT)2()(cos)()cos() bbTtttRttR (4.5)14再通过
26、 LPF 后,其输出为:)2(cos()2()1( bbcbTTtRty (4.6)式中)2()()()()2( bbbbb ttttT (4.7)当 ,)(kbc时为 整 数 ) )2()(cos)()cos(2(1 bbbb TttTtTtRty 2in)sint(4.8)如果在中频滤波器后,插入一个限幅器,则可以去掉振幅的影响,上式中内的项为偶函数,在 不超过 的范围内,它不会为负。它实际上反映)(bT2的是直流分量的大小,对判决不起关键作用,但需要把判决门限增加相应的直流分量 ;第二项 sin( (t)- (t-Tb)sin( (t-Tb)- (t-2Tb) 才是判决的依据。为了恢复出
27、传输的数据,令其中的 sin( (t)- (t-Tb)对应于原始数据经差分编码后的 ,而 sin( (t-Tb)- (t-2Tb)则对应于 ,两者相乘等效kakc 1kc于两者的模二相加 。若发端进行差分编码,根据差分编码的规则,1,可得 ,即为解调输出。1kkckca而相应在发端,需对原始数据 进行差分编码,下图即为差分编码框图 7:a4.4 差分编码调制框图1bit 差分解调是对每个比特进行操作的,所以不需要差分编解码的。令限幅器输出信号振幅为 1,则)(2cos)(2tTtrbI(4.9)式中)()(2btt15(4.10)为当前码元内的附加相位与前面第二个码元内的附加相位之差。当 时,
28、可将式 (4.9)表示为kTbI2)2()(cos)()cos)( bbb TttTttr inin(4.11)由于 及 小于 /2,故式(4.5)的第bbTk)1()(bbTkk)2()1(一项在 时刻的抽样值为正值,设为 第二项在 时刻的抽样值可能为正值也kTV可能为负值。若当前码元与前一码元相同,则 与bbk)1()(的符号相同,因此在抽样时刻 与bbkk)2()1( bT)(sin的符号相同,即第二项的抽样值为正。若当前码元与前Tsin一码元不同,则第二项的抽样值为负。可见,若令 bbk TkkbT)2()1(sing1(4.12)则可将信息代码 表示为ka1kkba(4.13) 称
29、为绝对码, 为相对码(差分码)即对输入数据进行差分编码。kakb由此可以得出结论:如 ,则图 4.3 所示的解调器在第 k 个码元及第VkTrb)(k-1 个码元的输入信号对应的差分码码元不相同,信息代码(绝对码)为“1” ;否则,解调器在两个码元内输入信号对应的差分码元相同,信息代码为“0” 。这就是判决规则,即”码时 判 决 为 “码时 判 决 为 0)(1VkTrb(4.14)16第五章 实验仿真结果及分析5.1 GMSK 调制与 MSK 调制的性能比较首先对 GMSK、MSK 调制方式进行比较。编制程序文件进行仿真。在程序中设置信源产生信息的比特率 Rb=10kb/s;设置 GMSK
30、基带调制/解调器模块的输出信号采样数参数 xSamplesPerSymbol 为 2,设置 GMSK 调制与解调器的 BT 乘积为0.3.运行程序文件,结果如图 5.1 所示: 17图 5.1 GMSK、MSK 调制性能比较从仿真结果上来看,MSK 数字调制优于 GMSK 数字调制,但是 GMSK 数字调制的频谱在主瓣以外衰减得更快,且邻路干扰小,因此在要求信号带外辐射功率限制严格的移动通信中,选择 GMSK 更佳。再比较应用 GMSK 时,将参数 BT 改变后,对误码率的影响,以及与 MSK 比较的情祝。改变 GMSK 调制与解调器的 BT 乘积值,分别为 BT=0.3 和 BT=0.5,并
31、绘制出在不同信噪比参数下的图形如图 5.2 所示。图 5.2 在不同 BT 参数下的 GMSK 与 MSK 比较从图 5.2 可以看出,BT=0.3 的性能比 BT=0.5 的性能差;B T=0.5 的曲线比较接近 MSK 曲线;而 MSK 曲线的性能较优。从原理上讲,GMSK 是 MSK 的改进,GMSK 频谱在主瓣以外比 MSK 衰减得更快,且邻路干扰小。但是,GMSK 信号的频谱特性的改善是通过降低误码率性能换来的。前置滤波器的带宽越窄,即 BT 值越小,输出功率谱就越紧凑,误码率性能就变得越差。当 BT 趋于无穷时,GMSK 就蜕变为 MSK。虽然,图 5.2 只是比较了BT=0.3
32、和 BT=0.5 的曲线,但从趋势上来看,BT 的值越大,其曲线将越接近 MSK18曲线。5.2 两种差分解调的误码率比较比较一下同样使用波形正交法调制,1bit 和 2bit 差分解调的误码率曲线:选取 0 到 20 分贝进行统计,得到误码率曲线如下图 5.3 所示:图 5.3 两种差分解调的误码率比较从图 5.3 可以看出 2bit 差分检测的性能明显优于 1bit 特差分检测的性能。选择波形正交调制方法,调制端 BT 值为 0.3,接收端 BT 值为 0.5,可以看出在相同误比特率条件下,2bit 差分检测要比 1bit 差分检测好 7dB 左右。取信噪比为 15dB 时,1bit 差分
33、解调的误码率在 10-1以下,而 2bit 差分的误码率在 10-3以下。5.3 GMSK 调制仿真实验图在进行仿真实验时,随机数据产生单元的数据速率设为SymbolRate=1bit/s,仿真时间为 250s。运行 GMSK 调制系统模型可得如下仿真图。GMSK 调制的 I、Q 两路信号波形:图 5.4 I 路调制波形19图 5.5 Q 路调制波形在实际的数字通信系统中,信息的传递要通过信道,而这将不可避免的带来噪声的干扰,因此在实验中模拟信道中噪声对调制信号的干扰将非常重要。下面是 GMSK 调制信号经过加性高斯白噪声后的仿真图。图 5.6 经过加性高斯白噪声后5.4 一比特差分解调仿真波
34、形GMSK 调制数据先后经过一比特差分检测子模块、积分和抽样子模块后,即为一个完整的解调系统,对其进行仿真分析即可。20图 5.7 经过高斯滤波后的 I、Q 两路调制数据从仿真图可以观察到滤波后的波形恢复得到了良好的效果。图 5.8 一比特差分检测数据 Bitdecode 与原始输入数据比较从图 5.8 可以看到,经过一比特差分检测后的数据 Bitdecode 的符号与原始输入数据的符号达到了一致。一比特差分检测具有良好的解调性能。第六章 总 结21GMSK 是一种基于 MSK 的二进制调制方法,具有恒包络、功率谱收敛、抗干扰性强等优点,目前得到了广泛的应用。本文首先介绍了 MSK 调制的基本
35、原理,MSK 的频谱利用率高、具有相位连续的特点,但功率谱不够紧凑,从而需要引入带有预调制滤波器的 MSK 调制方法GMSK 调制。对 GMSK 调制信号的形式进行具体分析,同时对比分析了 MSK 调制与 GMSK 调制的误码性能。对 GMSK 调制信号的解调,本文重点介绍了差分解调,作了 Matlab 仿真,从仿真上来看,比较了 1bit 差分和 2bit 差分的效果,虽然在相同条件下,1bit 差分的误码率比 2bit 差分低,但由于二比特延迟差分检测在进行判决时对判决电平的要求较严格,2bit 差分的判决门限制约了 2bit 差分的使用。此外,发送端和接收端滤波器的 BT 值对系统性能也
36、有影响,差分检测属于非相干解调,由于避免了提取载波的工作,实施起来比较简便,目前差分检测得到了广泛的应用。由于条件和自身水平的原因,本文只在高斯白噪声信道情况下进行了算法的仿真,在其它信道情况下的仿真还有待进一步的完善。22参考文献(References)1 王福昌.通信原理M.北京:清华大学出版社,2006.3.2 吴迪.GMSK 解调理论的研究和无线调制解调器的设计D.山东:东北大学,2001.6.13 王光亮.通信系统原理教程M.西安:西安电子科技大学出版社,2007.3.4 张平川.现代通信原理与技术简明教程M.北京:北京大学出版社,2006.1.5 陶亚雄.现代通信原理(第 2 版)
37、M.北京:电子工业出版社,2006.8.6 啜钢,王文博,常永宇,全庆一.移动通信原理与系统(第 2 版)M.北京:北京邮电大学出版社,2009.2.7 熊于菽. GMSK 调制解调技术研究D.重庆:重庆大学,2007.9.8 吴迪.GMSK 解调理论的研究和无线调制解调器的设计D.山东:东北大学,2001.6.19 娄莉. GMSK 数字调制的仿真与分析D.西安:西安石油大学,2004.6. 23致 谢非常感谢我的指导教师,李迟生教授。本论文是在他的亲切关怀和悉心指导下完成的。他严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。从选题到开题报告,从写作提纲,到一遍又一遍地指出每稿中的具体问题,严格把关,循循善诱,在此我要向我的导师致以最衷心的感谢和深深的敬意。在此,向所有关心和帮助过我的领导、老师、同学和朋友表示由衷的谢意!衷心地感谢在百忙之中评阅论文和参加答辩的各位专家、教授!