收藏 分享(赏)

过控单容水箱建模原理.ppt

上传人:HR专家 文档编号:6346347 上传时间:2019-04-08 格式:PPT 页数:27 大小:878KB
下载 相关 举报
过控单容水箱建模原理.ppt_第1页
第1页 / 共27页
过控单容水箱建模原理.ppt_第2页
第2页 / 共27页
过控单容水箱建模原理.ppt_第3页
第3页 / 共27页
过控单容水箱建模原理.ppt_第4页
第4页 / 共27页
过控单容水箱建模原理.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、过程控制系统,主讲教师:姜萍,2.2 机理法建模,1、流入量和流出量把被控过程看作一个独立的隔离体,从外部流入被控对象内部的物质或能量流量成为流入量;从对象内部流出的物质或能量就称为流出量。与之相关的基本关系是能量与物质的平衡关系。,单位时间内物质/能量流入量单位时间内物质/能量流出量 被控过程内部物质/能量存储量的变化率,动态物料(或能量)平衡关系-单位时间内被控过程流入量与流出量之差等于被控过程内部存储量的变化率。,流入流出量与输入输出量的区别,理解流入流出量,才能正确理解被控过程动态特性的实质,物质或能量的平衡关系是反应过程特性的基本关系,也是机理法建模的基础。 在控制系统方框图中,无论

2、是流入量还是流出量只要是引起被调量变化的原因,就是被控对象的输入量(控制输入或扰动输入)。,二、机理法建模步骤,物理概念清楚,“白箱模型”,1、根据建模过程和模型使用目的做出合理的假设 2、根据被控过程内在机理建立数学模型 主要依据:物质或能量的动态平衡关系 单位时间内流入量-单位时间流出量=被控过程内部物质或能量的存储量的变化率,3、简化处理: 尽可能简单(模型降阶、忽略次要参数、线性化),2.2.2 单容过程建模,1、单容储液箱液位过程,单容过程-只有一个贮蓄容量的过程。,-阀门开度,被控过程的输入变量 Q1-流入量,中间变量 Q2-流出量,中间变量 h-液位,被控过程的输出变量 A-储液

3、箱横截面积 (建立阀门开度和液位h之间的动态关系),(1)建模过程 建立液位与进水阀开度的关系,流入量 流出量 系统输入量:进水阀门开度% 输出量:液位h 水箱横截面积:A (储存物质的能力,流入量Q1由大小控制,流出量Q2由出水阀控制,当2不变时液位h越高,静压越大,Q2越大,其中k是与开度有关的系数,简化起见认为是常数,稳态时变量为,动态物质平衡关系,各变量相对稳态的增量为:,流入量、流出量的变化量的物理关系,由 的增量形式,增量(变化量)之间的关系,(2)过程模型中的特征参数,静态放大系数K,当,时,,输入变化量放大K倍成为输出变化量,由此得到计算静态放大系数的计算式,意义:如果有一定的

4、输入变化量通过对象就被放大了K倍变为输出稳态值h(),所以称K为对象的放大系数,它表示对象受到输入作用后,重新达到平衡时的性能,是不随时间而变的,是对象的静态特性,也称为静态放大倍数。,按照输入量是来自控制阀的还是外界干扰量,相应的放大系数称为对象调节通道的放大系数和干扰通道的放大系数,此处是对象通道的放大系数。, 时间常数T,时间常数T表示液位在t0以最大速度一直变化到稳态值所需的时间,表征液位过程响应快慢的参数,表示的是t=0时液位变化的初始速度,由响应曲线来看,dh/dtt0等于曲线在起始点切线的斜率h()/T,可见,这条切线在新的稳态值h()上截得的一段时间正好等于T。,因此,时间常数

5、T的物理意义:当对象受到阶跃输入后,被调量如果保持初始速度变化,达到新的稳态值所需的时间就是时间常数 。,初始速度,被调量在t时的变化速度最大,随着时间的增长被调量变化的速度是越来越小的。所以被调量变化到新的稳态值所需要的时间,要比T长得多。理论上说,需要无限长的时间才能达到稳态值。 只有当t时,hK,达到稳态,但是当t3T时,有h(3T)(1e3)0.95h()说明从加入输入作用后,经过3T,液位已经变化了全部变化范围的95%,这时,近似地认为动态过程基本结束。可见,时间常数越大,过渡过程时间越长,系统受到扰动后恢复稳定的时间越长。 另外:当t=T时,这就是说,当对象受到阶跃输入后,输出(被

6、调量)达到新的稳态值的63.2%所需的时间,就是时间常数T。显然,时间常数越大,被调量的变化越慢,达到新的稳态值所需的时间也越长,也就表明对象的惯性越大,输出对输入的反应越慢。反之,T越小,表示对象惯性越小,输出对输入的反应越快。,自衡率,自衡过程在扰动作用破坏平衡工况后,被控过程在没有外部干预的情况下自动恢复平衡的特性称为自衡特性。这样的被控过程称为自衡过程。 自衡率说明被控过程自衡能力的大小,用放大系数的倒数来衡量,物理意义是被控参数每变化1个单位所能克服的扰动量。如液位中,对于同样大小的进水阀开度变化,液位只改变一点就能重新恢复平衡,说明该系统的自平衡能力强。所以,对于过程中希望自平衡率

7、大一些较好。,飞升速度,响应速度(飞升速度)是指在单位阶跃扰动作用下,被调量的最大变化速度即t时被调量的变化速度最大,即因此若大,说明在单位阶跃扰动下,被调量的最大变化速度大,即响应曲线陡,惯性小;反之,小说明惯性大。 因此,有时用被调量的响应速度或叫飞升速度表示对象的惯性。,综上所述,有自平衡能力的单容对象的动态特性可以用两组四个参数描述,它们之间的关系是:,(3)过程方框图,由系统的传递函数,(4)系统结构参数对过程的影响,对象的时间常数T(或飞升速度)和放大系数K(或自平衡率)是描述对象动态特性的两个特征参数,,说明是由对象本身的结构参数共同确定的,容量系数的影响容积系数是衡量一个过程对

8、象存贮物质(或能量)的能力的物理量,在此水箱对象的容量系数就是水箱的截面积A。若水箱截面积越大,对于出现同样大小的不平衡流量(Q1Q2),水箱液位h变化的速度就越小,即抵抗扰动的能力强。从这一方面来说,容量系数描述了对象抵抗扰动的能力。时间常数TRs,当阀阻Rs不变时,水槽的截面积越大,说明要使液位上升一个单位所需的存水量就越大,因此在同样的阶跃扰动量输入下,起始上升的速度就越小,因此水位h以该起始速度达到稳态值所需的时间就越长,即时间常数T越大。因此容量系数越大,对象的惯性越大。,阀阻Rs的影响,单容水箱中,在阀门2开度一定时,流出水量Q2的大小取决于液位h的高低。换言之,水槽流出水量每变化

9、一个单位需要液位变化多少,就取决于流出侧阀门2的阻力。即阻力表达为:当液位h变化范围较小时,阀门阻力Rs可近似看成常数,一般用稳态时h/Q2t来代替Rs 由于放大系数KKRs,因此,对象的阻力越大,则其放大系数K就越大。就是说在同样的阶跃扰动量输入下,稳态时阻力大的对象其h()越大。 Rs增大后其稳态值增大,且其时间常数也增大,这是因为时间常数TRs与阻力Rs也有关。,进水阀流量系数K的影响,进水阀流量系数越大,同样的阀门开度变化时的进水量Q1越大,显然液位的增幅就越大,系统的放大系数就越大。,2、单容积分水箱液位(无自平衡对象),无自衡过程-在扰动作用破坏平衡工况后,依靠其自身不能重新恢复平

10、衡的过程。过程无自平衡能力。水箱的出水量由定量泵确定,与水箱的液位H无关。当控制量进水量发生变化时,系统的流入量和流出量无法平衡,是一个典型的无自平衡对象。,在初始条件为零,阶跃扰动量为时的解为,在扰动量一定,容量系数一定时被调量的变化速度为一不变的常数,即呈现等速变化的积分特性。 将tT代入求得:当对象受到阶跃扰动输入后,输出达到和输入相同数值时所需的时间,就是飞升时间T。显然积分时间越大,被调量(输出)的变化越慢,输出对输入的反应越慢。 对象在阶跃扰动下,其被调量h的变化速度为KA ,定义无自平衡能力单容对象的飞升速度为:,对象的积分时间T越大,则飞升速度越小,输出对输入的响应越慢。 描述无自平衡能力单容对象的特征参数T或是由对象本身的结构参数即容量系数(水箱的截面积A)来确定。截面积A越大,对象的积分时间T越大或飞升速度越小,即同样的扰动量作用下水位变化的速度越小。,三、单容温度过程建模,容器内液体总热容为c,液体比热容为Cp,液体的流入、流出量相等为q,入口温度Ti,出口及容器内部为Tp。 条件:在环境温度Tc,流入温度Ti,流量q不变的前提条件下,建立电加热器电压U与液体输出温度Tp之间的动态关系。 物质流入流出量是平衡时,在此关注能量(热量)的动态平衡。,单位时间内进入容器的热量Qi与流出的热量Q0之差等于容器内热量存储的变化率,稳态时,Tp不变,仍用增量形式,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报