收藏 分享(赏)

三角学的起源与发展.doc

上传人:wspkg9802 文档编号:6332644 上传时间:2019-04-07 格式:DOC 页数:12 大小:229KB
下载 相关 举报
三角学的起源与发展.doc_第1页
第1页 / 共12页
三角学的起源与发展.doc_第2页
第2页 / 共12页
三角学的起源与发展.doc_第3页
第3页 / 共12页
三角学的起源与发展.doc_第4页
第4页 / 共12页
三角学的起源与发展.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、1壹、三角學的起源與發展三角學之英文名稱 Trigonometry ,約定名於西元 1600 年, 實際導源於希臘文 trigono (三角)和metrein (測量) ,其原義為三角形測量(解法),以研究平面三角形和球面三角形的邊和角的關係為基礎,達 到測量上的應用為 目的的一門學科。早期的三角學是天文學的一部份,後 來研究範圍逐漸擴大,變 成以三角函數為主要 對象的學科。 現在,三角學的研究範圍已不僅限於三角形,且為數理分析之基礎,研究實用科學所必需之工具。( ) 西方的發展三角學Trigonometry創始於西元前約 150 年, 早在公元前 300 年,古代埃及人已有了一定的三角學知識

2、,主要用於測量。例如建築金字塔、整理尼羅河泛濫後的耕地、通商航海和觀測天象等。公元前 600 年左右古希臘學者泰勒斯(p13)利用相似三角形的原理測出金字塔的高,成為西方三角測量的肇始。公元前 2 世紀後希臘天文學家希帕霍斯(Hipparchus of Nicaea)為了天文觀測的需要,作了一個和現在三角函數表相仿的弦表,即在固定的圓內,不同圓心角所對弦長的表,他成為西方三角學的最早奠基者,這個成就使他贏得了三角學之父的稱謂。公元 2 世紀,希臘天文學家數學家托勒密(Ptolemy)(85-165)繼承希帕霍斯的成就,加以整理發揮,著成天文學大成13 卷,包括從 0到 90每隔半度的弦表及若干

3、等價於三角函數性質的關係式,被認為是西方第一本系統論述三角學理論的著作。2約同時代的梅內勞斯(Menelaus)寫了一本專門論述球三角學的著作 球面學, 內容包球面三角形的基本概念和許多平面三角形定理在球面上的推廣,以及球面三角形許多獨特性質。他的工作使希臘三角學達到全盛時期。 (二)中國的發展我國古代沒有出現角的函數概念,只用勾股定理解決了一些三角學範圍內的實際問題。據周髀算經記載,約與泰勒斯 同時代的陳子已利用勾股定理測量太陽的高度,其方法後來稱為重差術。 1631 西方三角學首次輸入,以德國傳教士鄧玉函、 湯若望和我國學者徐光啟(p20)合編的大測為代表。同年徐光 啟等人還編寫了測量全義

4、,其中有平面三角和球面三角的論述。1653 年薛風祚與波蘭傳教士穆尼閣合編三角算法,以三角取代大測,確立了三角名稱。1877 年華蘅煦等人對三角級數展開式等問題有過獨立的探討。 現代的三角學主要研究角的特殊函數及其在科學技術中的應用,如幾何計算等,多發展於 20 世紀中。 貳、三角函數的演進正弦函數、餘弦函數、正切函數、餘切函數、 正割函數、餘割函數統稱為三角函數(Trigonometric function)。 儘管三角知識起源於遠古,但是用線段的比來定義三角函數,是 歐拉(p16)(1707-1783)在無窮小分析引論一書中首次給出的。在歐拉之前,研究三角函數大都在一個確定半徑的圓內進行的

5、。如古希臘的托勒密定半徑為 60;印度 人阿耶波多(約 476-550)定半徑為 3438;德國數學家里基奧蒙特納斯(1436-1476)為了精密地計算三角函數值曾定半徑 600,000;後來為製訂更精密的正弦表又定半徑為 107。因此,當時的三角函數實際上是定圓內的一些線段的長。 意大利數學家利提克斯(1514-1574)改變了前人的做法,即過去一般稱 AB 為 的正弦,把正弦與圓牢牢地連結在一起(如下頁圖), 而利提克斯卻把它稱為AOB 的正弦,從而使正弦值直接與角掛勾,而使圓 O 成為從屬地位了。 到歐拉(Euler)時,才令圓的半徑為 1,即置角於單位圓之中,從而使三角函數定義為相應的

6、線段與圓半徑之比。 1. 正弦、餘弦 DCB0AP3在ABC 中,a、b、 c 為角 A、B、C 的對邊, R 為ABC 的外接圓半徑,則有 稱此定理為正弦定理。 正弦定理是由伊朗著名的天文學家阿布爾.威發(940-998)首先發現與証明的。中亞細亞人阿爾比魯尼973-1048 (p15)給三角形的正弦定理作出了一個証明。 也有說正弦定理的証明是 13世紀的那希爾丁在論完全四邊形中第一次把三角學作為獨立的學科進行論述,首次清楚地論証了正弦定理。他還指出,由球面三角形的三個角,可以求得它的三個邊,或由三邊去求三個角。這是區別球面三角與平面三角的重要標誌。至此三角學開始脫離天文學,走上獨立發展的道

7、路。托勒密( Claudius Ptolemy )的天文學大成第一卷除了一些初級的天文學資料之外,還包括了上面講的弦表:它給出一個圓從 ( ) 到 180每隔半度的所有圓心21角所對的弦的長度。圓的半徑被分為 60 等分,弦長以每一等分為單位,以六十進位制表達。這樣,以符號 crd a 表示圓心角 所對的弦長, 例如 crd 36= 37p455“,意思是:36 圓心角的弦等於半徑的 (或 37 個小部分),加上一個小部分的 ,再加上一個小部分的 ,6037 6043605從下圖看出, 弦表等價於正弦函數表,因為 120OsincrdAB的 直 徑圓公元 6 世紀初,印度數學家阿耶波多製作了一

8、個第一象限內間隔 345的正弦表,依照巴比倫人和希臘人的習慣,將圓周分為 360 度,每度為 60 分,整個圓周為 21600 份,然後據 2r=216000,得出 r=3438近似值 ,然後用勾股定理先算出 30、45、90的正弦之後,再用半角公式算出較小角的正弦值,從而獲得每隔 345的正弦長表;其中用同一單位度量半徑和圓周,孕育著最早的弧度制概念。他在計算正弦值的時候,取圓心角所對弧的半弦長,比起希臘人取全弦長更近於現代正弦概念。印度人還用到正矢和餘弦,並給出一些三角函數的近似分數式。A M BAO42.正切、餘切著名的敘利亞天文學、數學家阿爾一巴坦尼850-929於 920 年左右,製

9、成了自 0到 90相隔 1的餘切 cotangent表。 公元 727 年,僧一行受唐玄宗之命撰成大行曆。為了求得全國任何一地方一年中各節氣的日影長度 ,一行編出了太陽天頂距和八尺之竿的日影長度對應表, 而太陽天頂距和日影長度的關係即為正切tangent 函數 。而巴坦尼編製的是餘切函數表, 而太陽高度角和太陽天頂距角互為餘角,這樣兩人的發現實際上是一回事,但巴坦尼比一行要晚近 200 年。 14 世紀中葉,中亞細亞的阿魯伯 1393-1449,原是成吉思汗的後裔,他組織了大規模的天文觀測和數學用表的計算。他的正弦表精確到小數 9 位。他還製造了 30到 45之間相隔為 1,45到 90的相隔

10、為 5的正切表。 在歐洲,英國數學家、坎特伯雷大主教布拉瓦丁1290?-1349首先把正切、餘切引入他的三角計算之中。 3.正割、餘割正割secant及餘割cosecant 這兩個概念由阿布爾威發首先引入。 sec 這個略號是 1626 年荷蘭數基拉德1595-1630在他的三角學中首先使用,後經 歐拉 採用才得以通行。正割、餘割函數的現代定義亦是由歐拉給出的。 歐洲的文藝復興時期, 14 世紀-16 世紀偉大的天文學家 哥白尼 1473-1543提倡地動學說,他的學生利提克斯見到當時天文觀測日益精密,認為推算更精確的三角函數值表刻不容緩。於是他定圓的半徑為 1015,以製作每隔 10“的正弦

11、、正切及正割值表。當時還沒有對數,更沒有計算機。全靠筆算,任務十分繁重。利提克斯和他的助手們以堅毅不拔的意志,勤奮工作達 12 年之久,遺憾的是,他生前沒能完成這項工作,直到 1596 年,才由他的學生鄂圖1550-1605 完成並公佈於世,1613 年海得堡的彼提克斯 1561-1613又修訂了 利提克斯的三角函數表,重新再版。後來英國數學家納皮爾發現了對數,這就大大地簡化了三角計算,為進一步造出更精確的三角函數表創造了條件。 4.三角函數符號 5毛羅利科早於 1558 年已採用三角函數符號, 但當時並無 函數概念,於是只稱作三角線( trigonometric lines)。他以 sinu

12、s 1m arcus 表示正弦,以 sinus 2m arcus 表示餘弦。 而首個真正使用簡化符號表示三角線的人是 T.芬克。他於 1583 年創立以“tangent”(正切)及“secant”(正割)表示相應之概念,其後他分別以符號“sin.”,“tan. ”, “sec. ”,“sin. com”,“tan. com”,“ sec. com”表示正弦,正切,正割,餘弦,餘切,餘割,首三個符號與現代之符號相同。後來的符號多有變化,下列的表便顯示了它們之發展變化。 使用者 年代 正弦 餘弦 正切 餘切 正割 餘割 備註羅格蒙格斯 1622 S.R. T. (Tang) T. c pl Sec

13、 Sec.Compl 吉拉爾 1626 tan sec. 杰克 1696 s. cos. t. cot. sec. cosec. 歐拉 1753 sin. cos. tag(tg). cot. sec. cosec 謝格內 1767 sin. cos. tan. cot. 巴洛 1814 sin cos. tan. cot. sec cosec 施泰納 1827 tg 皮爾斯 1861 sin cos. tan. cotall sec cosec 奧萊沃爾 1881 sin cos tan cot sec csc 申弗利斯 1886 tg ctg 萬特沃斯 1897 sin cos tan c

14、ot sec csc 舍費爾斯 1921 sin cos tg ctg sec csc 註:現代(歐洲)大陸派三角函數符 現代英美派三角函數符號 我國現正採用類三角函數符號。 1729 年,丹尼爾伯努利是先以符號表示反三角函數,如以 AS 表示反正弦。1736 年歐拉以At 表示反正切,一年後又以 Asin 表示 於單位圓上正弦值相等於 的弧。 cbbc1772 年,C申費爾以 arc. tang. 表示反正切;同年,拉格朗日採以 表示反正弦1sin.arc函數。1776 年,蘭伯特則以 arc. sin 表示同樣意思。1794 年,鮑利以 Arc.sin 表示反正弦函數。其後這些記法逐漸得到

15、普及,去掉符號中之小點,便成現今通用之符號,如 arc sin x,arc cos x 等。6於三角函數前加 arc 表示 反三角函數,而有時則改以於三角函數前加大寫字母開頭 Arc,以表示反三角函數之主值。 另一較常用之反三角函數符號如 sin-1x ,tan-1x 等,是 赫謝爾於 1813 年開始採用的,把反三角函數符號與反函數符號統一起來,至今亦有應用。 參、三角函數的和差化積公式下列公式稱為三角函數的和差化積公式。 法國著名數學家韋達1540-1603 (p18)在他的著名的三角學著作標準數學中收集並整理了有關三角公式並給予補充,其中就有他給出的恒等式: 【後記】三角函數名稱的由來和

16、補充想知道為何三角函數要叫做 sin,cos 這些名字嗎?經過了多方的查取資料,找到了下圖:7上面這個圖稱為三角圓(半徑1),是用圖形的方式表達各函數。其中我們可以看到,sin為 PM 線段,也就是圓中一條弦(對 2 圓周角)的一半,所以稱為正弦。而 cos 是 OM 線段,但 OMNP,故我們也可以將 cos 視為 NOP(90-)的正弦值,也就是 的餘角的正弦值,故稱之為餘弦。其餘類推。另外,除了課本中教的六種三角函數外,我們還查到了其他的三角函數,如上圖中的vers、covers 和 exsec。事實上,在歷史上曾出現過的三角函數種類超過十種呢!但最後只剩下這六種常用的。其他的還有如半正

17、矢(hav)、古德曼函數和反古德曼函數等。【補充:小歷史】大部分的三角函數一開始都是由於天文上的需要而造出來的。在三角函數傳入中國時,正、餘矢函數還未廢棄,故徐光啟將八種三角函數稱為八線。後來因為矢類函數廢棄不用,故八線之名漸被三角取代,但統一的名稱還是到了民國以後才確立的。參考資料:1. 梁宗巨(1995),數學歷史典故(九章出版社) 2. 王懷權 幾何發展史(凡異出版社)參考網站:1. http:/www.edp.ust.hk/math/history/2. http:/home.educities.edu.tw/sanchiang/3. http:/archives.math.utk.e

18、du/topics/history.html4. http:/ Tales of Miletus 約公元前 625-前 547,古希臘古希臘哲學家、自然科學家。生於小亞細亞西南海岸米利都,早年是商人,曾遊歷巴比倫、埃及等地。泰勒斯是希臘最早的哲學學派伊奧尼亞學派的創始人,他幾乎涉獵了當時人類的全部思想和活動領域,被尊為希臘七賢之首。而他更是以數學上的發現而出名的第一人。他認為處處有生命和運動,並以水為萬物的本源。 泰勒斯在數學方面的劃時代貢獻是開始引入了命題證明的思想,它標誌著人們對客觀事物的認識從經驗上升到理論。這在數學史上是一次不尋常的飛躍,其重要意義在於: 1. 保證命題的正確性,使理論

19、立於不敗之地; 2. 揭露各定理之間的內在聯繫,使數學構成一個嚴密的體系,為進一步發展打下基礎; 3. 使數學命題具有充份的說服力,令人深信不疑。 數學自此從具體的、實驗的階段過渡到抽象的、理論的階段,逐漸形成一門獨立的、演譯的科學。證明命題是希臘幾何學的基本精神,而泰勒斯是希臘幾何學的先驅。在幾何學中,下列的基本成果歸功於他: 1. 圓被任一直徑所平分; 2. 等腰三角形的兩底角相等; 3. 兩條直線相交,對頂角相等; 4. 已知三角形兩角和夾邊,三角形即已確定; 5. 對半圓的圓周角是直角; 6. 相似三角形對應邊成比例等等。 泰勒斯在埃及時還曾利用日影及比例關係算出金字塔的高,說明相似形

20、已有初步認識。在天文學中他曾精確地預測了公元前 585 年 5 月 28 日發生的日食,還可能寫過航海天文學一書,並已知按春分、夏至、秋分、冬至劃分四季是不等長的。9阿爾- 比魯尼 al-Biruni973-1050比魯尼生於今烏茲別克的一個城市,畢生從事科學研究和寫作,共寫了大約 146 部著作,但留傳至今的只有 22 部。按已知其頁數的著作估算,比魯尼寫出的手稿當有 13000 頁之多,當中幾乎涉及到當時所有科學領域,如天文學、歷史學、地理學、數學、力學、醫學、葯物學、氣象學等。比魯尼特別偏重於那些易受數學影響的學科,其大部份之著作均是天文學和占星術有關。他在數學的應用,尤其在數學的傳播、

21、東西方數學的交流方面,做出了突出的貢獻。 歐拉(Euler Leonhard, 17071783)10歐拉,瑞士數學家及自然科學家。在 1707 年 4 月 15 日出生於瑞士的巴塞爾, 1783 年 9 月 18日於俄國的彼得堡去逝。 歐拉出生於牧師家庭,自幼已受到父親的教育。 13 歲時入讀巴塞爾大學,15 歲大學畢業,16 歲獲得碩士學位。 歐拉的父親希望他學習神學,但他最感興趣的是數學。在上大學時,他已受到約翰第一伯努利的特別指導,專心 研究數學,直至 18 歲,他徹底的放棄當牧師的想法而專攻數學,於 19 歲時(1726 年)開始創作文章,並獲得巴黎科學院獎金。 1727 年,在丹尼

22、爾伯努利的推薦下,到俄國的彼得堡科學院從事研究工作。並在 1731 年接替丹尼爾第一伯努利 ,成為物理學教授。 1735 年,他因工作過度以致右眼失明。在 1741 年,他受到普魯士 腓特烈大帝的邀請到德國科學院擔任物理數學所所長一職。他在柏林期間,大大的擴展了研究的內容,如行星運動、剛 體運動、熱力學、彈道學、人口學等,這些工作與他的數學研究互相推動著。與此同時,他在微分方程、曲面微分幾何 及其他數學領域均有開創性的發現。 1766 年,他應俄國沙皇喀德林二世敦聘重回彼得堡。在 1771 年,一場重病使他的左眼亦完全失明。但他以其驚人的 記憶力和心算技巧繼續從事科學創作。他通過與助手們的討論

23、以及直接口授等方式完成了大量的科學著作,直至生命的 最後一刻。 歐拉是數學史上最多產的數學家,我們現在習以為常的數學符號很多都是歐拉所發明介紹的,例如:函數符號 f(x)、圓週率 、自然對數的底 e、求和符號 、log x、sin x、cos x 以及虛數單位 i 等。喬治西蒙曾稱他為數學界的莎士比亞 。11韋達 Francois Vi te(1540-1603)法國數學家。亦譯維埃特。因其著作均用拉丁文 發表,故名字當用拉丁文拼法,譯為韋達(Vi ta)。1540 年生於普瓦圖地區豐特奈勒孔特,1603 年 12 月 13 日卒於巴黎。早年在普瓦捷大學學習法律,1560 年畢業後成為律師,後

24、任過巴黎行政法院審查官,皇家私人律師和最高法院律師。1595-1598 年對西班牙戰爭期間破譯截獲的西班牙密碼,卓有成效。他業餘研究數學,並自籌資金印刷和發行自己的著作。 主要著作有:應用三角形的數學定律(1579 ),給出精確到 5 位和 10 位小數的 6 種三角函數表及造表方法,發現正切定律、和差化積等三角公式,給出球面三角形的完整公式及記憶法則:截角術( 1615 年出版),給出 sinnx 和 cosnx 的 展開式;分析術入門(1591),創設大量代數符號,引入未知量的運算,是最早的符號代數專著; 論方程的識別與訂正(1615 年出版),改進了三、四次方程的解法,給出三次方程不可約

25、情形的三角解法,記載了著名的韋達定理(方程根與系數的關係式);各種數學解答(1593)中給出圓周率 值的 第一個解析表達式,還得到 的 10 位精確值等等。 12徐光啟公元 1562-1633 年徐光啟,字子先,號玄扈,生於上海,於 1604 年考中進士,相繼任禮部右侍郎、尚書、翰林院學士、東閣學士等,最後官至文淵閣大學士,他畢生致力於介紹西方科學,同時注意總結中國的固有科學遺產,編成巨著 農政全書,成為我國近代科學的啟蒙大師。 徐光啟除與利瑪竇合譯幾何原本前六卷外,還有測量全義公元 1631 年,這是西方三角學及測量術傳入我國之始。公元 1629 年 崇禎二年,徐光啟首次應用西方天文學和數學正確推算日蝕。同年七月,禮部決定開設曆局,由徐光啟組建,於是,一些西方傳教士如龍華尼意大利人、鄭玉函 瑞士人 、湯若望 德國人、羅雅谷 意大利人先後參與了中國的曆法改革工作。從公元 1629 至 1643 年,明亡止,共完成了崇禎曆書137 卷,主要介紹當時歐洲天文學家第谷Tycho. Brahe的地心學說,數學方面則以平面幾何與球面三角據多。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报