收藏 分享(赏)

广东省各市2012年中考数学分类解析 专题2:代数式和因式分解.doc

上传人:dwy79026 文档编号:6315791 上传时间:2019-04-06 格式:DOC 页数:8 大小:255.27KB
下载 相关 举报
广东省各市2012年中考数学分类解析 专题2:代数式和因式分解.doc_第1页
第1页 / 共8页
广东省各市2012年中考数学分类解析 专题2:代数式和因式分解.doc_第2页
第2页 / 共8页
广东省各市2012年中考数学分类解析 专题2:代数式和因式分解.doc_第3页
第3页 / 共8页
广东省各市2012年中考数学分类解析 专题2:代数式和因式分解.doc_第4页
第4页 / 共8页
广东省各市2012年中考数学分类解析 专题2:代数式和因式分解.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、 - 1 -广东 2012 年中考数学试题分类解析汇编专题 2:代数式和因式分解1、选择题1. (2012 广东佛山 3 分) 等于【 】23aA B C D5a689a【答案】A。【考点】同底数幂的乘法。【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即:。故选 A。23+5a=a2. (2012 广东广州 3 分)下面的计算正确的是【 】A6a5a=1 B a+2a 2=3a3 C(ab)=a+b D2(a+b)=2a+b【答案】C。【考点】去括号与添括号,合并同类项。【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果

2、括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案:A、6a5a=a,故此选项错误;B、a 与 2a2 不是同类项,不能合并,故此选项错误;C、(ab) =a+b,故此选项正确; D、2(a+b)=2a+2b,故此选项错误。故选 C。3. (2012 广东汕头 4 分)下列运算正确的是【 】Aa+a=a 2 B (a 3) 2=a5 C3aa 2=a3 D 2a=【答案】D。【考点】合并同类项,幂的乘方与积的乘方,同底数幂的乘法。【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法运算

3、法则逐一计算作出判断:A、a+a=2a ,故此选项错误;- 2 -B、 (a 3) 2=a6,故此选项错误;C、3aa 2=3a3,故此选项错误;D、 ,故此选项正确。=a故选 D。4. (2012 广东深圳 3 分)下列运算正确的是【 】A, B。 C。 D。25ab235a3(2)6a623a【答案】B。【考点】合并同类项,同底幂乘法和除法,幂的乘方和积的乘方。【分析】根据合并同类项,同底幂乘法和除法,幂的乘方和积的乘方运算法则逐一计算作出判断:A. 和 不是同类项,不可以合并,选项错误;2a3bB. ,选项正确;2+5aC. ,选项错误;33()=8D. ,选项错误。6264aa故选 B

4、。5. (2012 广东湛江 4 分)下列运算中,正确的是【 】A3a 2a 2=2 B (a 2) 3=a5 Ca 3a6=a9 D (2a 2) 2=2a4【答案】C。【考点】合并同类项,同底幂乘法,幂的乘方和积的乘方。【分析】根据合并同类项,同底幂乘法,幂的乘方和积的乘方运算法则逐一计算作出判断:A、3a 2a 2=2a2,故本选项错误;B、 (a 2) 3=a6,故本选项错误 ;C、a 3a6=a9,故本选项正确;D、 (2a 2) 2=4a4,故本选项错误。故选 C。6. (2012 广东肇 庆 3 分)要使式子 有意义,则 的取值范围是【 】xxA B C Dx0x222【答案】A

5、。【考点】二次根式有意义的条件。- 3 -【分析】根据二次根式被开方数必须是非负数的条件,要使 在有意义,必须2x。故选 A。2x027. (2012 广东珠海 3 分)计算2a 2+a2 的结果为【 】A3a Ba C3a 2 Da 2【答案】D。【考点】合并同类项。【分析】根据合并同类项法则(把同类项的系数相加作为结果的系数,字母和字母的指数不变)相加即可得出答案:2a 2+a2=a 2。 。故选 D。二、填空题1. (2012 广东省 4 分)分解因式:2x 210x= 【答案】2x(x5)。【考点】提公因式法因式分解。【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若

6、有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式。因此,直接提取公因式 2x 即可:2x 210x=2x (x5 )。2. (2012 广东广州 3 分)分解因式:a 38a= 【答案】a(a+2 )(a2 )。【考点】提公因式法和公式法因式分解。【分析】先提取公因式 a,再对余下的多项式利用平方差公式继续分解:a38a=a(a 28)=a(a+2 )(a2 )。3. (2012 广东梅州 3 分)若代数式4x 6y 与 x2ny 是同类项,则常数 n 的值为 【答案】3。【考点】同类项。【分析】根据同类项的定义列式求解即可:代数式4x 6y 与

7、x2ny 是同类项,2n=6,解得:n=3。4. (2012 广东汕头 4 分)分解因式:2x 210x= 【答案】2x(x5)。【考点】提公因式法因式分解。- 4 -【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式。因此,直接提取公因式 2x 即可:2x 210x=2x(x5 )。5. (2012 广东汕头 4 分)若 x,y 为实数,且满足 ,则 的值是 3+y=0201xy 【答案】1。【考点】非负数的性质,算术平方根,绝对值。【分析】根据算术平方根和绝对值非负数的性质,要使

8、 ,必须有x3+y=0且 ,即 x=3,y=3。 。x3=0y201201x=y2. (2012 广东佛山 6 分)化简: a+bc【答案】解:原式= 。11a=bacc【考点】分式的加减法。【分析】应用分配率较简便,也可先通分,再计算。3. (2012 广东广州 10 分)已知 (ab) ,求 的值1+=5ababb- 5 -【答案】解: , ,1+=5aba+b5 。2a+bab=5a【考点】分式的化简求值。【分析】由 得出 ,对 通分(最简公分母为 )1+=5aba+b5abab,分子因式分解,约分,化简得出 ,代入求出即可。a4. (2012 广东汕头 7 分)先化简,再求值:(x+3

9、) (x3)x(x2) ,其中 x=4【答案】解:原式=x 29x 2+2x=2x9。当 x=4 时,原式=24 9= 1。【考点】整式的混合运算(化简求值)。【分析】先把整式进行化简,再把 x=4 代入进行计算即可。5. (2012 广东汕头 9 分)观察下列等式:第 1 个等式: ;113a2(第 2 个等式: ;25第 3 个等式: ;317a(第 4 个等式: ;4192请解答下列问题:(1)按以上规律列出第 5 个等式:a 5= = ;(2)用含有 n 的代数式表示第 n 个等式:a n= = (n 为正整数) ;(3)求 a1+a2+a3+a4+a100 的值【答案】解:(1) 。

10、192 (2) 。1n+2n+(3)a 1+a2+a3+a4+a100111=+257290(- 6 -1111201=+=2357920 。【考点】分类归纳(数字的变化类)。【分析】 (1) (2)观察知,找等号后面的式子规律是关键:分子不变,为 1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的 2 倍减 1 和序号的 2 倍加 1。(3 )运用变化规律计算。6. (2012 广东深圳 6 分)已知 = 3, =2,求代数式 的值abbaa22)(【答案】解:原式= 。21b当 = 3, =2 时,原式= 。a1=3269. (2012 广东珠海 6 分)先化简,再求值: ,

11、其中 2x1x+=2- 7 -【答案】解:原式= 。2x+1x11=x当 时,原式= 。22【考点】分式的化简求值,二次根式化简。【分析】先将括号内的分式通分,进行加减后再算除法,计算时,要将除法转化为乘法。最后代入 ,化简求值。x=210. (2012 广东珠海 9 分)观察下列等式:12231=13221,13341=14331,23352=25332,34473=37443,62286=68226,以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:52 =

12、 25; 396=693 (2)设这类等式左边两位数的十位数字为 a,个位数字为 b,且 2a+b9,写出表示“数字对称等式”一般规律的式子(含 a、b) ,并证明【答案】解:(1)275;572。63;36。(2) “数字对称等式” 一般规律的式子为:(10a+b)100b+10(a+b)+a=100a+10(a+b)+b (10b+a) 。证明如下:左边两位数的十位数字为 a,个位数字为 b,左边的两位数是 10a+b,三位数是 100b+10(a+b)+a,右边的两位数是 10b+a,三位数是 100a+10(a+b)+b,- 8 -左边=(10a+b)100b+10(a+b)+a=(1

13、0a+b) (100b+10a+10b+a)=(10a+b) (110b+11a)=11 (10a+b) (10b+a) ,右边=100a+10(a+b)+b(10b+a)=(100a+10a+10b+b) (10b+a)=(110a+11b) (10b+a)=11 (10a+b) (10b+a) ,左边=右边。“数字对称等式” 一般规律的式子为:(10a+b)100b+10(a+b)+a=100a+10(a+b)+b (10b+a) 。【考点】分类归纳(数字的变化类) ,代数式的计算和证明。【分析】 (1)观察规律,左边,两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;右边,三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可:5+2=7 ,左边的三位数是 275,右边的三位数是572。52275=57225。左边的三位数是 396,左边的两位数是 63,右边的两位数是36。63369=69336。(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行证明即可。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报