收藏 分享(赏)

基于51的避障循迹重力感应遥控的智能小车设计(c语言)_毕业设计论文.doc

上传人:无敌 文档编号:628830 上传时间:2018-04-15 格式:DOC 页数:58 大小:2.99MB
下载 相关 举报
基于51的避障循迹重力感应遥控的智能小车设计(c语言)_毕业设计论文.doc_第1页
第1页 / 共58页
基于51的避障循迹重力感应遥控的智能小车设计(c语言)_毕业设计论文.doc_第2页
第2页 / 共58页
基于51的避障循迹重力感应遥控的智能小车设计(c语言)_毕业设计论文.doc_第3页
第3页 / 共58页
基于51的避障循迹重力感应遥控的智能小车设计(c语言)_毕业设计论文.doc_第4页
第4页 / 共58页
基于51的避障循迹重力感应遥控的智能小车设计(c语言)_毕业设计论文.doc_第5页
第5页 / 共58页
点击查看更多>>
资源描述

1、基于 51 的避障/循迹/重力感应遥控的智能小车设计1 绪论1.1 选题背景随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。可见其研究意义很大。本设计就是在这样的背景下提出的,指导教师已经有充分的准备。本题目是结合科研项目而确定的设计类课题。设计的智能电动小车应该能够实现适应能力,能自动避障,可以智能规划路径。智能化作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。同遥控小车不同,遥控小车需要人

2、为控制转向、启停和进退,比较先进的遥控车还能控制器速度。常见的模型小车,都属于这类遥控车;智能小车,则可以通过计算机编程来实现其对行驶方向、启停以及速度的控制,无需人工干预。操作员可以通过修改智能小车的计算机程序来改变它的行驶方向。因此,智能小车具有再编程的特性,是机器人的一种。中国自1978年把“智能模拟”作为国家科学技术发展规划的主要研究课题,开始着力研究智能化。从概念的引进到实验室研究的实现,再到现在高端领域(航天航空、军事、勘探等)的应用,这一过程为智能化的全面发展奠定基石。智能化全面的发展是实现其对资源的合理充分利用,以尽可能少的投入得到最大的收益,大大提高工业生产的效率,实现现有工

3、业生产水平从自动化向智能化升级,实现当今智能化发展由高端向大众普及。从先前的模拟电路设计,到数字电路设计,再到现在的集成芯片的应用,各种能实现同样功能的元件越来越小为智能化产物的生成奠定了良好的物质基础。智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航、人工智能及自动控制等技术,是典型的高新技术综合体。1.2 智能小车研究现状智能车辆作为智能交通系统的关键技术,是许多高新技术综合集成的载体。智能车辆驾驶是一种通用性术语,指全部或部分完成一项或多项驾驶任务的综合车辆技术。智能车辆的一个基本特征是在一定道路条件下实现全部或者部分的自

4、动驾驶功能,下面简单介绍一下国内外智能小车研究的发展情况。1.2.1 国外智能车辆研究现状国外智能车辆的研究历史较长,始于上世纪 50 年代。它的发展历程大体可以分成三个阶段:第一阶段 20 世纪 50 年代是智能车辆研究的初始阶段。1954 年美国Barrett Electronics 公司研究开发了世界上第一台自主引导车系统AGVS(Automated Guided Vehicle System) 。该系统只是一个运行在固定线路上的拖车式运货平台,但它却具有了智能车辆最基本得特征即无人驾驶。早期研制 AGVS 的目的是为了提高仓库运输的自动化水平,应用领域仅局限于仓库内的物品运输。随着计算

5、机的应用和传感技术的发展,智能车辆的研究不断得到新的发展。第二阶段 从 80 年代中后期开始,世界主要发达国家对智能车辆开展了卓有成效的研究。在欧洲,普罗米修斯项目于 1986 年开始了在这个领域的探索。在美洲,美国于 1995 年成立了国家自动高速公路系统联盟(NAHSC) ,其目标之一就是研究发展智能车辆的可能性,并促进智能车辆技术进入实用化。在亚洲,日本于 1996 年成立了高速公路先进巡航/辅助驾驶研究会,主要目的是研究自动车辆导航的方法,促进日本智能车辆技术的整体进步。进入 80 年代中期,设计和制造智能车辆的浪潮席卷全世界,一大批世界著名的公司开始研制智能车辆平台。第三阶段 从 9

6、0 年代开始,智能车辆进入了深入、系统、大规模研究阶段。最为突出的是,美国卡内基.梅隆大学(Carnegie Mellon University)机器人研究所一共完成了 Navlab 系列的 10 台自主车(Navlab1Navlab10)的研究,取得了显著的成就。目前,智能车辆的发展正处于第三阶段。这一阶段的研究成果代表了当前国外智能车辆的主要发展方向。在世界科学界和工业设计界中,众多的研究机构研发的智能车辆具有代表性的有:德意志联邦大学的研究 1985 年,第一辆 VaMoRs 智能原型车辆在户外高速公路上以 100km/h 的速度进行了测试,它使用了机器视觉来保证横向和纵向的车辆控制。1

7、988 年,在都灵的 PROMRTHEUS 项目第一次委员会会议上,智能车辆维塔(VITA,7t)进行了展示,该车可以自动停车、行进,并可以向后车传送相关驾驶信息。这两种车辆都配备了 UBM 视觉系统。这是一个双目视觉系统,具有极高的稳定性。荷兰鹿特丹港口的研究 智能车辆的研究主要体现在工厂货物的运输。荷兰的 Combi road 系统,采用无人驾驶的车辆来往返运输货物,它行驶的路面上采用了磁性导航参照物,并利用一个光阵列传感器去探测障碍。荷兰南部目前正在讨论工业上利用这种系统的问题,政府正考虑已有的高速公路新建一条专用的车道,采用这种系统将货物从鹿特丹运往各地。日本大阪大学的研究 大阪大学的

8、 Shirai 实验室所研制的智能小车,采用了航位推测系统(Dead Reckoning System) ,分别利用旋转编码器和电位计来获取智能小车的转向角,从而完成了智能小车的定位。另外,斯特拉斯堡实验中心、英国国防部门的研究、美国卡内基梅隆大学、奔驰公司、美国麻省理工学院、韩国理工大学对智能车辆也有较多的研究。1.2.2 国内智能车辆研究现状相比于国外,我国开展智能车辆技术方面的研究起步较晚,开始于 20 世纪80 年代。而且大多数研究处在于针对某个单项技术研究的阶段。虽然我国在智能车辆技术方面的研究总体上落后于发达国家,并且存在一定得技术差距,但是我们也取得了一系列的成果,主要有:(1)

9、中国第一汽车集团公司和国防科技大学机电工程与自动化学院与2003 年研制成功我国第一辆自主驾驶轿车。该自主驾驶轿车在正常交通情况下的高速公路上,行驶的最高稳定速度为 13km/h,最高峰值速度达 170km/h,并且具有超车功能,其总体技术性能和指标已经达到世界先进水平。(2)南京理工大学、北京理工大学、浙江大学、国防科技大学、清华大学等多所院校联合研制了 7B.8 军用室外自主车,该车装有彩色摄像机、激光雷达、陀螺惯导定位等传感器。计算机系统采用两台 Sun10 完成信息融合、路径规划,两台 PC486 完成路边抽取识别和激光信息处理,8098 单片机完成定位计算和车辆自动驾驶。其体系结构以

10、水平式结构为主,采用传统的“感知-建模-规划-执行”算法,其直线跟踪速度达到 20km/h,避障速度达到 5-10km/h。智能车辆研究也是智能交通系统 ITS 的关键技术。目前,国内的许多高校和科研院所都在进行 ITS 关键技术、设备的研究。随着 ITS 研究的兴起,我国已形成一支 ITS 技术研究开发的技术专业队伍。并且各交通、汽车企业越来越加大了对 ITS 及智能车辆技术研发的投入,整个社会的关注程度在不断提高。交通部已将 ITS 研究列入“十五”科技发展计划和 2010 年长期规划。相信经过相关领域的共同努力,我国 ITS 及智能车辆的技术水平一定会得到很大提高。可以预计,我国飞速发展

11、的经济实力将为智能车辆的研究提供一个更加广阔的前景。我们要结合我国国情,在某一方面或某些方面,对智能车进行深入细致的研究,为它今后的发展及实际应用打下坚实的基础。1.3 主要内容本课题要开发一个能自动循迹自动避障同时可以遥控的智能小车控制系统,系统分小车和遥控器两部分,主要以简易智能机器人为开发平台,选择通用、价廉的 51 单片机为控制平台,选择常见的电机模型车为机械平台,通过细化设计要求,结合传感器技术和电机控制技术相关知识实现小车的各种功能。设计完成以由红外线对管的自动寻迹、红外线自动避障、重力遥控组成的硬件模块结合软件设计组成多功能智能小车,共同实现小车的前进倒退、转向行驶,自动根据地面

12、黑线寻迹导航,检测障碍物后停止等功能,实现智能控制,达到设计目标。2 方案设计及论证2.1 总体设计 本课题设计主要是制作一款能进行智能判断并能做出正确反应的小车。小车具有以下几个功能:自动避障功能;寻迹功能(按路面的黑色轨道行驶);基于重力感应的遥控(通过倾斜方向和角度控制小车运动方向和速度)。小车端以两直流电动机为主驱动,通过各类传感器件来采集各类信息,送入主控单元 89C52 单片机处理数据后完成相应动作,以达到自身控制。电机驱动电路采用 H 桥驱动模块-双 L298 步进/直流电机驱动板 ,能同时驱动 4 个直流电机和 2 个步进电机;避障采用漫反射式光电开关来完成,自动寻迹采用红外发

13、射管和接收管光电对管寻迹传感器完成,最后由控制单元处理数据后通过编程有序合理的将各模块信号整合在一起并完成相应动作,实现了智能控制,相当于简易机器人。遥控端由 MPU0605 陀螺仪和无线模块、按键模块、LCD 显示模块组成,通过检测按键和陀螺仪数据送入 89C52 单片机处理后判断用户的指令,然后通过NRF24L01 无线模块把指令发送到小车端,同时在 LCD12864 显示当前工作模式和小车的状态.2.2 主控单元方案比较与选择按照题目要求,控制器主要用于控制电机,通过相关传感器对路面的轨迹信息进行处理,并将处理信号传输给控制器,然后控制器做出相应的处理,实现小车的自动循迹和自动避障。 方

14、案一:可以采用 ARM 为系统的控制器,优点是该系统功能强大,片上外设集成度搞密度高,提高了稳定性,系统的处理速度也很高,适合作为大规模实时系统的控制核心。方案二:采用 AT89S52 作为系统控制的方案。AT89S52 单片机算术运算功能强,软件编程灵活、自由度大,功耗低、体积小、技术成熟,成本也比 ARM低。考虑到性价比问题,本设计选择 用 AT89S52 单片机做控制器。2.3 电机单元方案比较与选择方案一:采用直流电机,配合 LM293 驱动芯片组合。优点在于硬件电路的设计简单。当外加额定直流电压时,转速几乎相等。这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中,也用

15、于变速范围很宽的驱动装置,但容易受到外部因素干扰,影响稳定的转速和转矩输出。 方案二:采用直流减速电机。直流减速电机转动力矩大,体积小,重量轻,装配简单,使用方便,小车电机内部装有减速齿轮组,所以并不需要考虑调速功能,很方便的就可以实现通过单片机对直流减速电机前进、后退、停止等操作。综合以上考虑我们选择方案二的直流减速电机作为智能小车的驱动电机。2.4 电源单元方案比较与选择方案一:采用单电源供电,通过单电源同时对单片机和直流电机进行供电,此方案的优点是,减少机身的重量,操作简单,其缺点是,这样会使单片机的波动变大,影响单片机的性能,稳定性比较弱。方案二:采用双电源供电,通过两个独立的电源分别

16、对单片机和直流减速电机进行供电,此方案的优点是,减少波动,稳定性比较好,可以让小车更好的运作起来,唯一的缺点就是会增加小车的重量。综合以上的优缺点,本设计决定采用第二种方案。2.5 避障单元方案比较与选择方案一:用超声波传感器进行避障。超声波传感器的原理是:超声波由压电陶瓷超声波传感器发出后,遇到障碍物便反射回来,再被超声波传感器接收。但使用超声波模块的成本比较高。因此我们考虑其它的方案,超声波传感器实物图如下图 2 所示:图 2 超声波传感器方案二:用漫反射式光电开关进行避障。光电开关的工作原理是根据光线发射头发出的光束,被物体反射,其接收电路据此做出判断反应,物体对红外光由同步回路选通而检

17、测物体的有无。当有光线反射回来时,输出低电平。当没有光线反射回来时,输出高电平。光电开关的是物图如下图 3 所示:图 3 光电开关考虑到超声波测量的范围宽,使用非常灵活,帮助智能小车顺利绕过障碍,可以适应十分复杂的环境,我们最终选择了方案一。2.6 寻迹单元方案比较与选择方案一: 利用寻迹来引导小车到达用户所指定的地点。采用红外发射管和接收管光电对管寻迹传感器。红外发射管发出红外线,当发出的红外线照射到白色的平面后反射,若红外接收管能接收到反射回的光线则检测出白线继而输出低电平,若接收不到发射管发出的光线则检测出黑线继而输出高电平。此方案存在的缺陷是对光线的亮度要求较高,在夜间难以正常工作。方

18、案二: 通过超声波定位模块来实时定位小车的位置。超声波定位的基本原理是通过接收几个固定位置的发射点的超声波接收器, 在小车上加入一个发射器,通过无线模块计算各模块接收到超声波的时间差,通过集成模块的内部算法得出小车所在位置和原设定位置的偏差情况,从而得到主体到这几个发射点的距离, 实现了超声波的定位,由于超声波在空气中的衰减较大, 它只适用于较小的范围,而且使用此方案还将面临着在家中的超声波各通讯线的布局,使用很不方便。经实测发现方案一中的红外对管型寻迹模块只要给进行一定的改善,对环境的适应能力还是比较强的例如可以在晚上行进,这样就可以用低成本来实现我们你所需要的功能,所以就排除了方案二,以方

19、案一作为小车在家庭中的行进方式。3 硬件系统的设计3.1 单片机控制模块STC89C52 是一种低功耗、高性能 CMOS8 位微控制器,具有 8K 在系统可编程 Flash 存储器。在单芯片上,拥有灵巧的 8 位 CPU 和在线系统可编程Flash,使得 STC89C52 为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。 STC89C52 具有以下标准功能: 8k 字节 Flash,256 字节 RAM, 32 位I/O 口线,看门狗定时器,2 个数据指针,三个 16 位 定时器/计数器,一个6 向量 2 级中断结构,全双工串行口,片内晶振及时钟电路。另外,STC89C52可降至 0Hz

20、 静态逻辑操作,支持 2 种软件可选择节电模式。空闲模式下,CPU 停止工作,允许 RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM 内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。如图 4 是较为常见的单片机最小系统图。图 4 单片机最小系统3.1.1 时钟电路单片机的时钟产生有两种方法:内部时钟方式和外部时钟方式。系统的时钟电路设计是采用的内部方式,即利用芯片内部的振荡电路。AT89 单片机内部有一个用于构成振荡器的高增益反相放大器。引脚 XTAL1 和XTAL2 分别是此放大器的输入端和输出端。这个放大器与作为反馈元件的片外晶体谐振器一起构成

21、一个自激振荡器。外接晶体谐振器以及电容 C1 和 C2 构成并联谐振电路,接在放大器的反馈回路中。对外接电容的值虽然没有严格的要求,但电容的大小会影响震荡器频率的高低、震荡器的稳定性、起振的快速性和温度的稳定性。因此,此系统电路的晶体振荡器的值为 12MHz,电容应尽可能的选择陶瓷电容,电容值通常取 30PF。在焊接刷电路板时,晶体振荡器和电容应尽可能安装得与单片机芯片靠近,以减少寄生电容,更好地保证震荡器稳定和可靠地工作。3.1.2 复位电路位是由外部的复位电路来实现的。片内复位电路是复位引脚 RST 通过一个触发器与复位电路相连,触发器用来抑制噪声,它的输出在每个机器周期中由复位电路采样一

22、次。复位电路通常采用上电自动复位和按钮复位两种方式。所谓上电复位,是指计算机加电瞬间,要在 RST 引脚出现大于 10MS 的正脉冲,使单片机进入复位状态。按钮复位是指用户按下“复位”按钮,使单片机进入复位状态。如上图3 是按钮电平复位的一种实用电路。3.2 电机驱动模块的设计电机驱动模块采用专用芯片 L298N 作为电机驱动芯片,L298N 是一个具有高电压大电流的全桥驱动芯片,其响应频率高,一片 L298N 可以分别控制两个直流电机。图 5 电机驱动原理简图3.2.1 L298N 芯片的介绍L298N 是 ST 公司生产的一种高电压、大电流电机驱动芯片。该芯片采用 15脚封装。主要特点是:

23、工作电压高,最高工作电压可达 46V;输出电流大,瞬间峰值电流可达 3A,持续工作电流为 2A;额定功率 25W。内含两个 H 桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器线圈等感性负载;采用标准逻辑电平信号控制;具有两个使能控制端,在不受输入信号影响的情况下允许或禁止器件工作有一个逻辑电源输入端,使内部逻辑电路部分在低电压下工作;可以外接检测电阻,将变化量反馈给控制电路。使用L298N 芯片驱动电机,该芯片可以驱动一台两相步进电机或四相步进电机,也可以驱动两台直流电机,实物图及外围电路如下图 6、7 所示。图 6 L298N 芯片图 7 L298N 外围电路接口说明如下示:+5V:芯片电压 5V。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 学术论文 > 管理论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报