1、1江苏省滨海县陆集中学 2014 届九年级上学期双周检测数学试题(无答案) 苏科版一、选择题(本大题共有 10 小题,每小题 3 分,共 30 分在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内 )1与 是同类二次根式的是 ( )2A B C D 4 6 12 82下列方程有实数根的是 ( )A x2 x10 B x2 x10 C x26 x100 D x2 x1023若两圆的半径分别是 3 和 4,圆心距为 8,则两圆的位置关系为 ( )A相交 B内含 C外切 D外离4等腰梯形 ABCD 中, E、 F、 G、 H 分别是各边的中点,则四边形 EFGH
2、的形状是A平行四边形 B矩形 C菱形 D正方形5二次函数 y x26 x5 的图像的顶点坐标是 ( ) A(3,4) B(3,4) C(1,2) D(1,4)6如图, AB 是 O 的弦, OC AB 于点 D,交 O 于点 C,若 O 的半径为 10, CD4,那么 AB 的长为 ( )A8 B12 C16 D207如图, ABC 的顶点 A、 B、 C 均在 O 上, OAC20,则 B 的度数是( )A40 B60 C70 D808已知圆锥的底面的半径为 3cm,高为 4cm,则它的侧面积为 ( )A15cm 2 B16cm 2 C19cm 2 D24cm 29如图,在平面直角坐标系中,
3、 A 与 y 轴相切于原点 O,平行于 x 轴的直线交 A 于 M、 N 两点,若点M 的坐标是(4,2),则点 N 的坐标为 ( )A(1, 2) B(1,2) C(1.5,2) D(0.5,2) 10已知二次函数 y ax2 bxc c(a0)的图象如图所示,有下列 5 个结论: abc0; b a c; 4 a2 b c0;2 c3 b0; a b n(an b), ( n1)其中正确的结论有 ( ) A. 2 个 B. 3 个 C. 4 个 D. 5 个二、填空题(本大题共 9 小题,每题 4 分,共 36 分请把结果直接填在题中的横线上 )11若式子 在实数范围内有意义,则 x 的取
4、值范围是 x 212方程 x24 x0 的解为 13在四边形 ABCD 中, AD BC, D90 ,若再添加一个条件,就能推出四边形 ABCD 是矩形,你所添2加的条件是 (写出一种情况即可)14某公司 4 月份的利润为 160 万元,要使 6 月份的利润达到 250 万元,则平均每月增长的百分率是 15二次函数 y x22 x k 的部分图象如图所示,若关于 x 的一元二次方程 x22 x k0 的一个解为 x13,则另一个解 x2= 16如图, O 的直径 AB 和弦 CD 相交于点 M,已知 AM5, BM1, CMB60,则 CD 的长为 17.如图,菱形 ABCD 中,对角线 AC
5、, BD 相交于点 O,若 AC AB2, S 菱形 ABCD= 18如图,抛物线 y ax bx c 与 x 轴交于点 A(1,0), B(5,0)下列判断: ac0; b 4 ac; 4 a2 b c0; b4 a0其中判断一定正确的序号是_19如图,在矩形 ABCD 中,已知 AB3 cm, BC4cm将矩形 ABCD 绕着点 D 在桌面上顺时针旋转至 A1B1C1D,使其停靠在矩形 EFGH 的点 E 处,若 EDF30,则点 B 的运动路径长为 cm (结果保留 )三、解答题(本大题共有 8 小题,共 84 分 )20 (本题满分 5 分)计算: ( 1) 2 21(本题满分 5 分
6、)解方程: (x3)2 32 224 x(x3)022 (本题满分 10 分)如图,已知 AB 是 O 的直径,直线 CD 与O 相切于点C, AC 平分 DAB (1)求证: AD DC;(2)若 AD2, AC 5,求 AB 的长23 (本题满分 10 分)如图,在 ABC 中, AB AC, E、 F 分别为 AB, AC 上的点(E、 F 不与 A 重合),且 EF BC将 AEF 沿着直线 EF 向下翻折,得到 AEF,再展平3(1) 请证明四边形 AEAF 为菱形;(2) 当等腰 ABC 满足什么条件时,按上述方法操作,四边形 AEAF 将变成正方形?(不必证明) 24 (本题满分
7、 10 分)甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整: 身高(厘米)176 177 178 179 180甲队(人数)0 3 4 0乙队(人数)2 1 1(2)甲队队员身高的平均数为 厘米,乙队队员身高的平均数为 厘米;(3)你认为哪支仪仗队身高更为整齐?请用统计知识说明理由25 (本题满分 10 分)如图抛物线 y ax 5 x4 a 与 x 轴相交于点 A、 B,且过点 C(5,4)(1)求
8、a 的值和该抛物线顶点 P 的坐标(2)若将该抛物线先向左平移 3 个单位,再向上平移 4 个单位,求出平移后抛物线的解析式26 (本题 满分 10 分)若 x0 是关于 x 的一元二次方程( m2) x23 x m2 2 m80 的解,求实数 m 的值,并解此方程427 (本题满分 12 分)某化工材料经销公司购进了一种化工原料共 7 000 kg,购进价格为每千克 30 元,物价部门规定其销售单价不得高于每千克 70 元,也不得低于 30 元市场调查发现:单价定为 70 元时,日均销售 60 kg;单价每降低 1 元,日均多售出 2 kg,在销售过程中,每天还要除去其他费用400 元(天数
9、不足一天时,按整天计算) 设销售单价为 x 元,日均获利为 y 元. (日均获利销售所得利润-各种开支)(1) 求 y 关于 x 的函数关系式,并写出 x 的取值范围;(2) 求每千克单价定为多少元时日均获利最多,是多少?(3) 若用日均获利最多的方式销售或按销售单价最高销售,试比较哪一种销售获总利更多,多多少?28 (本题满分 12 分)如图,第一象限内半径为 4 的 C 与 y 轴相切于点 A,作直径 AD,过点 D 作 C 的切线 l 交 x 轴于点 B, P 为直线 l 上一动点,已知直线 PA 的解析式为: y=kx+6.(1) 设点 P 的纵坐标为 p,写出 p 随 k 变化的函数关系式;(2)设 C 与 PA 交于点 M,与 AB 交于点 N,则不论动点 P 处于直线 l 上(除点 B 以外)的什么位置时,都有 AMN ABP.请你对于点 P 处于图中位置时的两三角形相似给予证明;(3)是否存在 AMN 的面积等于 ?若存在,请求出符合的 k 值;若不存在,请说明理由.128255