收藏 分享(赏)

脑电信号特征提取及分类.doc

上传人:HR专家 文档编号:6049666 上传时间:2019-03-25 格式:DOC 页数:45 大小:4.18MB
下载 相关 举报
脑电信号特征提取及分类.doc_第1页
第1页 / 共45页
脑电信号特征提取及分类.doc_第2页
第2页 / 共45页
脑电信号特征提取及分类.doc_第3页
第3页 / 共45页
脑电信号特征提取及分类.doc_第4页
第4页 / 共45页
脑电信号特征提取及分类.doc_第5页
第5页 / 共45页
点击查看更多>>
资源描述

1、第 1 章 绪论第 1 章 绪论1.1 引言大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢 1。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的 2。人的大脑由大约 1011 个互相连接的单元体组成,其中每个单元体有大约 104 个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组

2、成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续 1-2ERP 的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低 70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基

3、础。细胞膜的电特性决定着神经元的电活动 3。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细

4、长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在 1857 年,英国的青年生理科学工作者卡通(R.Caton)就在猴脑和第 1 章 绪论兔脑上记录到了脑电活动,并发表了“脑灰质电现象的研究”论文,但当时并没有引起广泛的关注 4。1872 年,贝克(A.Beck) 5再一次发表脑电波的论文,才引起广泛关注,从而掀起脑电现象研究的热潮。可是,直至 19

5、24 年德国的精神病学家贝格尔(H.Berger ) 6才真正地记录到了人脑的脑电波,从此人的脑电图诞生了。图 1.1 人脑图 图 1.2 神经元图1.2 脑机接口概述1.2.1 脑机接口背景及意义脑-机接口 ( Brain-Computer Interface , BCI) 是在大脑与外部设备之间建立的直接的交流通道。脑机接口技术产生于二十世纪七十年代,是一种多学科的交叉技术,目前它在国际研究领域非常活跃,它涉及生物技术、生物医学工程、纳米技术、认知科学、信息技术、计算机科学、神经科学和应用数学等,成为众多学科科研工作者的研究热点。人的大脑是一个极其复杂的系统,研究人的思维机理、实现神经系统

6、损伤患者于周围环境进行信息交换是神经学领域里的极其重要的一项研究课题。人体脑电信号综合地反映了大脑神经系统的思维活动,是分析脑状况和神经活动的主要依据 7。脑电信号与神经系统脑部疾病如脑血管病、癫痫、神经系统损失等有着密切的关系。因此脑电信号的分析处理和分类识别对脑部疾病的病态预报、辨识和防治具有很重要的意义。BCI 为人们提供了与外界进行交流和控制的另一种方式,人们可以不通过语言和动作来交流,而是直接通过脑电信号来表达思想、控制设备,这也为今后智能机器人的发展提供了一个更为灵活的信息交流方式。脑-机接口作为连接生物智能系统第 1 章 绪论和人工智能系统的一个复杂平台,对脑机接口的研究是一项长

7、期而艰巨的任务。最近十年来,脑-机接口的研究有了可喜的发展 8。在全球范围内,越来越多的学者和教师等科研人员投入到脑-机接口的研究热潮中来。BCI 装置的应用场合大致有如下四个方面:一是为思维正常但神经肌肉系统瘫痪(如脊髓 (或脑干) 损伤,肌萎缩性侧索硬化等)的病人设计出合适的 BCI 装置,让病人恢复对身体肌肉的控制和交流能力;二是当传统控制方式不能完全满足一些场景的控制要求时,为特殊环境作业人员提供辅助控制(如医疗手术、航空航天等);三是 BCI 装置可为人们提供另一种新的娱乐方式,例如用“思想”玩网络游戏等;四是在研究自动化控制的同时,加深对人类脑电活动规律的认知深度 9。上述四方面中

8、第一个应用场景是目前最重要的应用,而随着研究的深入和扩展,其他的更多的应用场合也正在不断的增加。时至今日,大多数 BCI 系统仍然处于实验室的理论研究阶段,直到最近几年,才逐渐看到其在实用的医疗器械装置中崭露头角。BCI系统将“电脑”与“人脑”完美地整合在同一个系统中,可以说实现了一句古话:“心想事成”。虽然目前 BCI 技术的开发中还存在许多技术难关尚未攻破,但从目前所取得的阶段性成果中我们已经看到了开发此类装置的重要科学价值及其广泛的应用前景。现在,使用脑-机接口技术研制的的人机交互系统在航空航天、智能控制和信息处理等领域也有着广泛的应用。中国有大约三千两百多万 10老年人需要不同形式的护

9、理,而目前我国为老年人提供的服务设施严重短缺。同时,由于各种灾难和疾病造成的残障人士也很多,这就更加增大了对服务设施的需求。目前许多发达国家采用服务机器人为老年人与残疾人士提供服务,用来提高他们的生活质量。但是,由于大多数服务机器人与人的交互方式都是通过声音、按钮等传统方式,而很多老年人及残障人士部分或完全丧失了自主控制肌肉的能力,甚至吞咽、说话都困难,这些人控制此类服务机器人的难度非常大。如何使这部分人群重新恢复对外部世界的控制能力以及与外部世界交流的能力,帮助他们重新返回现代社会是目前研究的热点 11。脑机接口是人脑与计算机或其他电子设备之间建立的直接的交流和控制通道。通过这种通道,人就可

10、以直接通过脑来表达想法或操纵其他设备,而不再需要通过肢体的动作或语言,这是一种全新的通信和控制方式。由于其无创性、记录简单和高时间分辨率,利用脑电图方法获得人脑的电活动信号已成为脑-计算机接口研究、神经障碍患者康复研究等领域的重要监测手段。研究脑机接口有非常深远的意义,尤其是在脑机接口实用装置上。现在国内已经有很多科研单位及高校都在积极展开脑机接口的研究工作。并且,随着人们对脑机接口越来越深入的研究,目前已经有一些小组成功开发了一些基本可用的脑机接口原型 12。另外,有些企业也认为脑机接口的市场前景很广阔,正在着力开发医学第 1 章 绪论或非医学应用的脑机接口产品。由此观之,人们在进行基础研究

11、的同时,也要及时地花时间开发真正实用的脑机接口系统,以便研究的工作能跟上发展迅速的脑机接口潮流 13。1.2.2 研究历史和国内外现状1924 年德国精神病学家,耶那大学的 Hans Berger 教授 14首次发现并记录到人脑由规则的脑电活动。通过大量的实验研究确认了脑电图(electroencephalogram, EEG)的存在后,他于 1929 年正式发表了 “关于人脑电图”的论文,对人脑的电活动和脑电图做了精确的描述,奠定了脑电图学的基础。在人脑的中枢神经系统中始终存在着伴随脑神经活动所产生的电位活动,把这种电位活动检测出来就是脑电图。此后脑电图研究得到迅速发展,并推广到了全世界。1

12、932 年,Hans Berger 和 Dietsch15开始使用傅里叶变换分析脑电信号; 20 世纪 70 年代,在美国国防部的国防先进技术研究署(DARPA,Defense Advanced Research Projects Agency,就是这个部门发明了互联网)资助下,加利福尼亚大学洛杉矶分校(UCLA , University of California Los Angeles)开始尝试利用脑电信号,将人类思考的结果不借助肌肉和神经组织,而直接通过计算机来输出让思考可以直接被看到,让人脑可以直接控制机械 16。直到这时,脑-机接口(Brain-computer Interface,

13、 BCI)这个名词才首次出现在科学文献中。伴随这个词出现的是人们对大脑活动越来越深入的理解。1978 年,人们发现猴子可以在训练后,能够快速学会自由地控制初级运动皮层中单个神经元的放电频率 17;1989 年,约翰霍普金斯大学的科学家发现了恒河猴手臂运动方向和大脑运动皮层中单个神经元放电模式的关系 18;到了九十年代,一些研究人员已经能够实时捕捉运动皮层中的复杂神经信号,并且用来控制外部设备,使得机械义肢可能变得和原生肢体一样容易使用,人类在进化的漫长道路上看到了一种全新的可能性:人和机械,可以作为一个生命的不同组成部分而共同存在。1990 年代中期随着信号处理和机器学习技术的发展,脑机接口的

14、研究逐渐成为热点; 1991 年 Wolpaw19等发表了通过改变脑电信号中的 mu 节律幅度来控制光标移动的成果,最先提出了大脑驱动控制技术的概念,即脑电控制。之后不断出现有关脑电控制的实例;1999 年,Birbaumer 等人描述了一个使用脑电信号的脑机接口系统,以及其在残障人士身上测试的情况。在他们开创性的工作中,Birbaumer 等人展示了一个身患肌萎缩性( 脊髓 )侧索硬化(ALS)症病人成功使用 BCI 系统控制一个拼写装置并与外界交流 20。这个系统是根据这样一个事实:受试者能够自主的学习慢皮层电位的规律,第 1 章 绪论通过反馈训练学习,受试者可以使 SCP 幅度产生正向或

15、负向偏移。系统的缺点是它的通信速率也相对较慢,并且通常都需要受试者对系统进行数月的训练与学习。2000 年,Nature 发表了题目为 “Real Brains for Real Robots”的文章,报道了用从猴子大脑皮层获取的神经信号实时控制一个千里之外的机器人的例子 21。在 Birbaumer 等人工作的同时,一种以相关于运动想象的脑电信号变化作为控制信号的脑机接口系统也正在发展(Pfurts Cheller 和 Neuper,2001)。这些系统在很长一段时间内都只由健康人或者是四肢瘫痪者来测试,如今可选的测试对象加进了肌萎缩性( 脊髓 )侧索硬化(ALS)症病人和其它残障对象。20

16、02 年,清华大学生物医学工程研究所高上凯教授等人开发出了一个基于稳态视觉诱发电位(SSVEP)的视觉拨号系统。该系统运用不同频率的视觉刺激可以诱发频域特征明显的脑电信号的原理,只需用眼睛注视就能输入期望的号码,该系统的速度居世界前列,可以达到 68bits/min。此外,他们还较为深入的研究了基于运动想象的脑机接口系统。目前他们的研究所主要从两方面推进脑机接口的研究:一方面为研究脑机接口控制过程中的神经机理以实现具有互适应能力的脑机接口算法;另一方面为研制具有实用价值的脑机接口装置。2004 年 6 月,马萨诸塞州福克斯煲的“赛博动力学” 公司(Cyberkinetics) 22为一位 24

17、 岁的四肢瘫痪者马特内格尔(Matt Nagle)脑中植入了一枚芯片。这枚被叫做“脑门”(BrainGate)的芯片只有药片大小。医生为马特做了一个开颅手术,把 “脑门”放在大脑表面。在经过 9 个月的练习之后,马特可以仅凭思考来收发电子邮件、控制一个机械手臂,甚至可以玩电脑游戏。“脑门 ”有 96 个电极,可以探测 1000 多个神经元细胞的活动。将这些神经元的活动发送出来,通过电脑的分析和处理,让马特获得了更好的生活质量 23。 2008 年,匹兹堡大学的一项研究成果发表在自然杂志上。他们的一个研究小组将微电极阵列植入恒河猴大脑的运动区,采集多个神经元的放电信号,并且通过计算机转换成电动假

18、肢的控制命令。经过一段时间的训练之后,猴子学会了直接用大脑控制假肢运动,对抓取力度和假肢运动轨迹的控制达到了很高的准确度,几乎把机械假肢当成了自己的另一条手臂。 美国 New York 州的 Wadsworth 研究中心,奥地利的格拉茨大学,以及德国、加拿大等都在进行前沿性的研究。国内的像清华大学、华中科技大学、上海交通大学、中南民族大学、等都有研究,而清华大学在这方面做的比较深入。目前世界上处于领先地位的研究机构都有很不错的脑机接口实验系统。德国柏林的 Fraunhofer学院建立了一个叫做 B 脑机接口的原型机系统,并且在这个原型机基础上开发了一些具体的实例系统。最成功的一个例子是一个利用

19、运动想象(motor image)进行字符输入的系统,这个系统的拼写速度可以达到每分钟 7.6 个字符 24。在这个系统中,第 1 章 绪论利用被试者想象右手或右脚运动来产生两种不同的脑电波,系统分析识别这两种不同的脑电波然后分别作为“选择” 和“确定”的意思,通过这种方式来让被试者选择期望输入的字符。和之前的基于 P300 的字符拼写系统相比,这个系统的通讯速度提高了很多。奥地利格拉茨科技大学的脑机接口研究小组也是以运动想象为主要实验模式,实现了多类在线异步脑机接口系统,其中的典型代表为神经假肢控制系统。这个系统中实验者是一名小儿麻痹症患者,患者的左手手臂不能够自由抬放,手指不能抓握。实验中

20、分析识别患者运动想象时发出的脑电信号,转化为假肢的控制指令,从而使患者可以实现左手手臂的举起、放下、手指的抓紧和松开等动作,从而让患者实现一定程度的自理。除此之外,该小组还开发出了其他的脑机接口系统,像多媒体控制、虚拟键盘拼写等 25。无独有偶,德国著名的图宾根大学的 wolpaw 等使用另一种方法设计了一种思想翻译装置,通过监测慢皮质电位的变化来实现对外部设备的控制。系统中通过使用视觉反馈技术实现了字母拼写的功能。此外,美国纽约州最全面的州立健康实验室 Wadsworth 中心主要研究如何用从运动感觉皮质测得的脑电信号控制指针的一维或二维运动 26。为了便于比较和评估,他们研制了脑机接口-2

21、000 通用系统,目前世界上 200 多个实验室都已经在使用脑机接口 -2000 通用系统。最近,脑电波研究小组和脑电波研究方向的人数都在增加,但即使都是做脑机接口研究的小组,也是从不同的方面找不同的突破口,用来实现不同的应用,可以说是百家齐放,百花争鸣。早在 1995 年,全球的研究小组还不到 6 个,可是到了1999 年,研究小组的个数已经超过了 20,截止目前,世界各地的研究小组也有近百个。随着研究小组的增多,与此相关的学术会议也日渐频繁,相关的学术刊物文章也比比皆是,很多相关领域的杂志都已经为脑机接口开辟了专刊。同时国际脑机接口竞赛也应运而生,竞赛组织者会提供真实系统下采集的真人的 E

22、EG 数据,各参赛小组或个人对这些数据进行分析处理,最后提交结果和算法检验说明,此竞赛迄今为止已经顺利举办了很多次。伴随着脑机接口竞赛的成功举办,越来越多的研究单位开始对脑机接口技术产生兴趣。目前研究者们把用在各个领域的特征提取和分类的算法拿来研究对 EEG 信号的特征提取和分类。常用的特征提取算法有:自回归模型(AR 模型)、功率谱密度估计、小波变换、混沌法、公共空间模式、新型描述符、多维统计分析等。常用的分类方法有:Fisher 线性判别、贝叶斯方法、BP 神经网络、支持向量机等。经过多年的努力,BCI 的研究取得了不少令人欣慰的成果,但不可否认的是尚处于发展阶段。目前,大多数 BCI 仍

23、然处于实验阶段,大部分测试在正常人中进行,在残疾人中测试较少 27。BCI 要进入实际应用阶段,还有很多问题等待解决,如:如何降低脑机接口系统对感觉输出通道和常规运动的依赖程度;脑机接口系统的信第 1 章 绪论息传输率需要提高;目前还没有准确客观地评估脑机接口系统性能的规范;如何更有效地剔除各种噪声,获取清晰的脑电信号,寻求有效的信号特征、最优的特征提取和转换算法;脑机接口系统的开发要注重多样化、个性化,用来满足脑机接口系统应用广泛性的要求和使用者个体的差异;怎样设计出更为合理的学习训练方法,让使用者在尽可能短的时间内最有效地控制其脑电信号特征;减少电极的数量,降低使用的复杂程度,增强脑机接口

24、系统的稳定性和兼容性;提高用户使用时的自动化程度;增强使用者与脑机接口系统的相互适应性。近些年来,脑电波和大脑意识之间的作用关系的研究取得了显著的进展,科研人员意识到可以根据不同的脑电信号对不同的意识任务进行精准而迅速的分类,从而实现神经障碍患者和外界环境的信息沟通 28。脑机接口的开发和探索还存在着很多问题。尽管目前存在的这些问题不可能在短时间内完全解决,但它却为我们今后的研究方向提供了指导作用。相信随着当前各相关交叉学科,如智能控制,数学,信息科学,神经生物学、人工智能等,的不断发展与互相促进,还有全球各地的研究机构之间合作和交流的日渐频繁,脑机接口技术将越来越成熟稳定 29。随着对上述问

25、题的认识的深入,这些问题也会逐一解决,那时脑机接口将不再是实验室的一种理论,而是遍布我们生活的方方面面,各种新颖独特、高效便捷的脑机接口设备将会深入我们的生活,为我们提供便利。1.3 本文的研究内容本文主要是对受试者回答“是”或“非”时产生的 P300 脑电波进行了研究,通过对信号的预处理、特征提取和分类,最后达到能根据受试者的 P300 脑电波判断出受试者回答的是“是”还是“非”的结果。本文选择共空间模式(CSP)作为信号特征提取的算法,然后分别选择了 Fisher 线性识别和支持向量机(SVM)作为信号分类识别的算法,处理实验采集到的听觉刺激诱发的 P300 数据。本文共分为 5 章。第

26、1 章为绪论,主要介绍了脑机接口的基本概念和科学应用,阐述了脑机接口的研究背景和研究意义;第 2 章为脑机接口原理和实验信号采集,首先介绍了脑机接口系统的基本结构和原理,之后介绍了脑电信号的特点和分类,重点介绍了 P300 信号,最后介绍了脑电信号的采集过程;第 3 章为脑电信号数据处理方法介绍,主要介绍了脑电信号的各种算法。首先针对预处理逐一介绍了脑电信号中会包含的各种噪声及其特点,其次,介绍了特征提取算法,重点介绍了共空间模式,最后,介绍了特征分类算法,重点介绍了支持向量机和 Fisher 线性判别;第4 章为实验数据处理,主要对实验采集到的数据进行处理:脑电信号预处理、脑电信号特征提取、

27、特征分类,最后分析和讨论了数据处理结果;第 5 章为结论与展望,主要对全文的工作进行了总结,并对以后的研究进行展望。第 2 章 脑机接口原理和实验信号采集第 2 章 脑机接口原理和实验信号采集2.1 脑机接口基本原理及结构受试者在接收外界刺激后或产生动作意识和动作执行之间,他的大脑的神经系统电活动会发生相应的改变。我们可以通过一定的手段检测出神经电活动的这种变化,并把它作为动作即将发生的特征信号。通过对该信号特征提取和分类识别,分辨出引发脑电变化的动作意图,再通过计算机传输和外部驱动设备,把人的动作意图转化为实际动作,实现在没有肌肉和外围神经直接参与的情况下人脑对外部环境的控制 30,这就是脑

28、机接口的基本工作原理。脑机接口系统一般都具备脑电信号采集、脑电信号预处理、特征提取、分类、进入实际应用几个功能模块,详细见下图2.1。图 2.1 脑机接口系统图第 2 章 脑机接口原理和实验信号采集2.2 脑电信号介绍2.2.1 脑电信号采集方式脑电图在头皮外测量,电极仅仅用于接收信号。这是它最大的优势,不会对监控的大脑造成任何可能的损伤。而它的缺点也同样明显:在头皮外接收到的电信号不仅微弱,而且多个脑区的活动信号会叠加在一起,最终形成看起来十分混乱的波形。幸好这些缺点可以部分克服 31。微弱的电信号可以放大,而波形的分离早在十九世纪就已经由法国数学家傅立叶解决。现在我们只需要解决脑电波和大脑

29、思考行为的对应关系就可以 32。脑电信号的采集方式,从破坏性上可分为两类:“有创” 和 “无创” 。“有创” 采集方式由于要进行开颅手术而对大脑有一定的损伤;“ 无创” 采集方式就不需要这种手术,从而对人脑没有什么损害。有创采集方式具体可分为完全植入型和皮层表面电极。完全植入型就是将电极植入到大脑皮层中;而皮层表面电极型则是将电极放在大脑皮层的表面而不是真正植入大脑 33。1999 年,由 John Donoghue 领导的研究小组在 Nature 杂志上发表论文称 34,他们通过将一个微小的电极阵列植入了一名瘫痪病人的大脑运动皮层,从而使这位患者可以通过思维来操控外界设备,如打开电视机,移动

30、假肢,使用键盘打字,移动鼠标等。皮层表面电极方式和完全植入型相比较,两者虽然都需要做开颅手术,但皮层表面电极方式却不需要将电极植入大脑皮层,而是放置在大脑皮层表面,这样对皮层神经元的损伤就很小,风险也更低些。尽管如此,对大多数用户而言,开颅手术还是难以接受的。因此,有创型的研究和实施一般都是在那些需要用大脑皮层电极来实现病灶的精确定位的癫痫病人身上。目前使用最广泛的仍是基于头皮脑电的无创的脑机接口技术。但是,由于脑电信号在传输到头皮时已经衰减很多,信号十分微弱,要从如此微弱的脑电信号中提取意识信息是相当有难度的。在过去的十年中,科研工作者的研究方向主要就是集中在对头皮脑电信号的检测和分析上 3

31、5。侵入式 BCI,又称植入式 BCI,是一种有损型脑电采集技术,利用直接脑神经接口技术,通过外科开颅手术将电极阵列植入颅内,直接记录或刺激大脑神经元,从而实现和外界环境的交互。通过植入这些微装置于颅内神经中枢,可以更精准地监测大脑的活动、研究大脑机能、治疗脑部疾病,控制外部设备等。随着微机电技术、传感器技术、无线通信技术等技术的发展,新一代的可全植入、多功能的微装置也将实现 36。还有一种无损植入型技术是非侵入式 BCI。非侵入式 BCI 使用头皮电极记录大脑活动产生的 EEG 信号。非侵入式 BCI 系统可以实现简单、无损的脑机交互。侵入式 BCI 和非侵入式 BCI 相比,侵入式 BCI

32、 有损伤,但精确;而非侵入式 BCI 无第 2 章 脑机接口原理和实验信号采集损伤,但信号模糊,不易捕获,易被干扰 37。目前世界上的研究状况是不可兼得,但随着生物技术和信号技术的发展,非侵入式 BCI 的检测精度也将逐渐上升,这种技术也将在以后的研究中处于主导地位,并且在实际使用中有着广泛的应用。脑电图仪为放大百万倍的微伏级精密电子设备,它的使用环境及条件设备要求比较严格。通常应该选择在安静、避光和电磁干扰小的房间。临床使用的脑电图仪至少应有 8 个导联,此外还有 12、16、32 导联等多种规格型号。在认知研究中则一般使用 32、64、96 导联的脑电图仪。通常脑电图仪导联数目越多,所能获

33、得的脑电时空信息业越丰富。但是,电极数越多,除了设备更昂贵以外,在使用时安装电极的时间也越长,信息处理的复杂度也相应增加,因此应根据具体情况做出合理的取舍。记录脑电图所使用的电极有漏斗状电极、针状电极和盘状电极等几种,此外还有一些需要放置在特定部位的特殊电极如蝶骨电极、鼻咽电极、皮质电极和深部电极等。关于头皮电极的位置,有许多放置法如 Montreal、Cohn 及 Gibbs 法等 38。但应用最多的是 10-20 系统法,即国际脑电图学会建议采用的标准电极安放法。为了区分电极和两大脑半球的关系,通常右侧用偶数,左侧用奇数。1020 系统电极法,其前后方向的测量是以从鼻根到枕骨粗隆连成的正中

34、线为基准,将该距离分成 10 等份,按 10,20,20,20,20,10(%)的顺序做好标记。在此线左右等距的相应部位标定出左右前额点(FP1,FP2 )、额点(F3 ,F4)、中间点(C3 ,C4 )、顶点( P3,P4)和枕点(O1,O2 ),前额点的位置在鼻根上相当于鼻根至枕骨粗隆的 10%处,额点在前额点之后相当于鼻根至前额点距离的两倍,即鼻根正中线距离 20%处,向后中央、顶、枕诸点的间隔均为 20%,1020 系统电极的命名即源于此。1020 电极安放示意图见下图 2.2。图 2.2 10-20 电极安放示意图第 2 章 脑机接口原理和实验信号采集2.2.2 脑电波的分类脑电波就

35、是通过电极记录下来的脑细胞群的自发性、节律性电活动 39。以脑细胞电活动的时间为横坐标、电位为纵坐标,这样把时间与电位的相互关系记录下来的就是脑电图。正常的自发脑电一般处于几微伏到 75 微伏之间。而由心理活动所引起的脑电信号比自发脑电信号更为微弱,一般在 2 到 10 微伏之间,它通常被淹埋在自发电位中,其成分不规则而复杂。脑电波的波形近似于正弦波。它主要是由脑皮质层大量的神经元同时发生突触后的电位变化所引起。一般脑电信号见下图 2.3。图 2.3 脑电信号在安静状态下,大脑皮层神经细胞自发地表现出持续的节律性电位改变,称为自发脑电活动。它指在没有特定人为刺激的条件下,大脑细胞本身出现的电活

36、动。节律是由频率大体一致的波构成的脑电图。正常成年人的脑电图的波形、频率、波幅和位相等都具有一定特点。人体依其个体差异,身体状况,脑电图的特征都会有所不同。传统上,对脑电图的波形分类主要是依据其频率的不同由人工划分的。通常说来,频率慢的其波幅比较大,而频率快的其波幅就比较小。一般按照频率进行分类以表示各种成分。目前共有几种不同的分法,其中以下两种分法是最常用的,本文根据的是和田丰治的分法 40。 和田丰治分类: 波 0.5-3Hz, 波 4-7Hz, 波 8-13Hz, 波 13-30Hz, 波31Hz; Walter 分类: 波 0.5-3.5Hz, 波 4-7Hz, 波 8-13Hz, 波

37、 14-25Hz, 波26Hz。 波 健康人 波的平均振幅在 30-50 微幅,主要分布于顶枕区,一般呈正弦样波。大多数健康成人的脑电以 波为主要成分,在觉醒安静闭眼状态时出现的数量最多且振幅也最高。当进入睡眠时, 波完全消失。清醒睁眼时或注意集中时其幅值降低,并由较高频率的 波代替。以 波的频率为基准,比 波频率慢的叫慢波,比 波频率快的叫快波。 波 波的频率范围为 1430Hz,波幅范围为 530V,它遍及整个大脑,以额叶和中央区最为显著。光刺激能使 波受到抑制, 波与精神紧张及情绪激动有关,它们在期望和紧张状态下加强。 第 2 章 脑机接口原理和实验信号采集 波 波的频率为 47Hz,波

38、幅范围为 1040V,两侧对称,颞叶较明显,一般困倦时出现,是中枢神经系统抑制状态的表现。健康成人脑电图中仅散在出现少量 波。 波是正常儿童脑电图中主要成分,成人脑电图中出现 波表示为不正常波。 波出现与精神状态有关,在意愿受到挫折或抑郁时易出现,并可持续2060 秒之久,精神愉快时就消失。在老年期和病理状态下 波是很常见的波形。 波 波出现在熟睡、婴儿及严重器质性脑病患者中,幅值在 100 微幅左右。该波只能在皮质内发生,而不受脑的较低级部位神经的控制。 波 波为 3060Hz 频率范围内的脑电活动,波幅较低,在额区和前中央区最为明显。现在,基于 EEG 的脑机接口主要集中在两个方向 41:

39、诱发的信号和自发的信号。当某个异常事件发生后的 300ms 左右,将会检测出一个被叫做 P300 的电波峰值;当眼睛受到光或图像刺激后,视觉皮层将会产生视觉诱发电位。这两类信号可以通过诱发产生,并且判断准确率较高,但是缺点是需要外界刺激,并且依赖人体本身的某些知觉才能工作。而当某侧肢体运动或者仅仅是想象其运动时同侧的脑区产生的事件相关同步电位、通过反馈训练可以自主控制的皮层慢电位和自发的阿尔法、贝塔等脑电信号虽然不需要外界刺激,但是需要大量的特殊训练和适应过程。 2.2.3 P300 信号介绍P300 是事件相关电位 (EventRelatedPotential,ERP) 的一种,由于其峰值大

40、约出现在相关事件发生后的 300ms,因此被命名为 P300。研究表明,相关事件出现的概率越小,其引起的 P300 电位越显著。基于 P300 的脑机接口的优点是使用者无须通过复杂训练就可获得较高的识别正确率。P300 是 Sutton42在 1965 年发现的,Sutton 的论文发表在当年的美国科学杂志上。Sutton 在发现 P300 时使用了一个称为 Oddball 的 ERP 实验范式。Oddball 实验范式是说,对同一个感觉通道施加两类不同的刺激,其中一种刺激出现的概率很大,而另一种刺激出现的概率很小,两种刺激随机出现。这样,对于被测者来说,小概率刺激的出现具有偶然性,出现频率较

41、低。Sutton 在实验时让被测者关注一个小概率刺激作为目标刺激,只要小概率刺激一出现就尽快做出反应。在这种条件下,实验记录显示在小概率刺激 300ms 之后会出现一个正波,这就是 P300。进一步研究发现,P300 的波幅和投入的心理资源量成正相关的关系,其潜伏期随任务难度增加而变长。关于 P300 和认知过程的联系,一种猜测是,P300 代表大脑结束知觉任务时的活动,当大脑对所期盼的目标刺激做出反应时,内侧颗叶或顶叶等相关部位会激活,产生了膜间负电位,当结束反应时这些部位又受到抑制,正是在这个时候会出第 2 章 脑机接口原理和实验信号采集现 P300。关于潜伏期的研究,Donchin 认为

42、 43,P300 的潜伏期反映的是大脑对外界刺激的反应所需的时间。这就意味着 P300 可用于研究脑的高级认知过程。另外,有研究发现,在一般的哺乳动物中也普遍存在着 P300,这说明 P300 很有可能代表生物神经系统的某种基本活动。按照 ERP 成分的划分方法 44,根据潜伏期的差异,10ms 内为早成分,10-50ms为中成分,50-300ms 为晚成分,300ms 以后则称为慢波。P300 显然属于晚成分。通常所测量的 P300 是淹没在自发脑电以及眼电、肌电、脑电、工频等一系列干扰信号中的,而其中最难分离的就是自发脑电信号。事件相关电位有两个重要的特性:潜伏期恒定和波形恒定。与此相对,

43、自发脑电则是随机变化的。所以,可以将同一事件多次引起的多段脑电记录下来,但每一段脑电都是各种成分的综合,包括自发脑电(噪声)。将由相同刺激引起的多段脑电进行多次叠加,由于自发脑电或噪音是随机变化,有高有低,相互叠加时就出现正负抵消的情况,而 ERP 信号则有两个恒定,所以不会被抵消,其波幅反而会不断增加,当叠加到一定程度时,ERP 信号就会显现出来了。所以,在一般的 ERP 信号研究处理中,为了提取事件相关电位变化,会进行多次重复刺激,通过预定程序实现叠加提取。典型 P300 电位图见下图 2.4。图 2.2 P300 电位图图 2.4 典型 P300 电位图2.3 信号采集过程2.3.1 被

44、试和实验设计被试介绍选择合适的受试者对研究结果的普遍性和可靠性都具有很重要的影响。本课题的受试者为 7 位在读硕士,均身体健康、精神状态良好、矫正视力在 5.0 以上、右利手;实验室为环境安静、隔磁、隔热的电磁屏蔽室;电极采用了材料为氯化银的表面电极;为了减少躯体运动和脑电活动的干扰,本次实验选择耳垂作为参考电极第 2 章 脑机接口原理和实验信号采集(耳垂位置为国际 10-20 系统标准参考电极位置),而且为避免由同侧颞区造成的耳电极活化,采用对侧耳垂作为参考零电位。刺激方案设计实验的刺激方案为听觉刺激:录制好 6 个需要回答“是”或“非”的问题(例如:你是中国人吗?),其中 3 个问题的答案

45、是“是”,3 个问题的答案是“非”。受试者做实验时需带耳机听问题,然后用大脑回答。每位受试者做 10 组重复性试验。听觉刺激的问题时间间隔图见图 2.5。听觉刺激的问题的时间点图见图 2.6。图 2.5 听觉刺激的问题实验图第 2 章 脑机接口原理和实验信号采集图 2.6 刺激方案时间间隔图2.3.2 实验设备和数据采集脑电信号采集系统主要为脑电图仪。脑电图仪是专门用于测量和记录脑电图的装置,其工作做原理是:放置在头皮的电极能够检测出微弱的脑电信号,其通过电极导联耦合到差动放大器进行适当放大并且数字化,最后通过与其配套的 PC 上的记录系统记录下信号数据 45。听觉刺激脑电信号采集系统如下图

46、2.7 所示。 图 2.7 脑电信号采集系统第 2 章 脑机接口原理和实验信号采集上图中脑电采集系统主要包括脑电放大器(本实验采用的为一台 32 导高空间分辨率脑电设备(NT9200)一台、耳机线二根、USB 电缆一根、电极帽一个、PC 机两台(在采集脑电信号时,听觉刺激和脑电采集记录分别通过两台 PC 机同时进行)。脑电放大器、电极帽、PC 机的详细性能指标如下:1. 脑电放大器。如图 2.8 所示。 通道数:32; 采样率:1000/1024 次/秒; 共模抑制比:110dB; 噪声电平:2.5Vpp; 时间常数控制:0.03s,0.1s,0.3s; 高频滤波控制:15,30,45,60,

47、120Hz; 工频陷波:50Hz ; 输入范围:15mV; 分 辨 率:0.5V; 标记信号:正极电压:+4.5 到+12V (串口 8 脚+ 9 脚-)(圆形 内+ 外-) 校准方式:方波; 电源:USB 供电; 隔离电压:2500V; 运行环境:温度 10-40,湿度 30%-76%;图 2.8 脑电放大器 NT9200 第 2 章 脑机接口原理和实验信号采集2. 电极帽。用来采集头皮 EEG 信号。电极帽上的电极被固定在软橡胶内,以使佩戴者使用更舒适,适合长时间实验的需要。使用时需要在电极内注入导电膏或者用高浓度盐水浸泡,以保证电极与头皮接触电阻小于 5k,用于获得精确的脑电数据。实验室

48、采用的是符合国际 10-20 标准系统(详见图 2.2)的 32 导电极帽,电极为标准的银/氯化银(Ag/AgCl)电极。3. 两台 PC 机,其中一台 PC 用于安装听觉刺激系统,用来对受试者产生听觉刺激。另外一台 PC 于脑电放大其配套使用,用于采集实验产生的脑电信号。 PC 机的技术参数为: CPU:Intel Pentium 3.0GHz,64 位; 内存:4GB DDR 主板:华硕 P5GD1PRO FSB 800M; 显卡:七彩虹 NVIDIA GeForce 6200 128M; 显示器:联想,19 寸 LCD ; 硬盘:260GB SATA实验过程做实验时,在一个光线可控的屋子

49、里,做实验时熄灯。尽量隔绝外界噪声和电磁干扰。受试者坐在椅子中,两手自然地放在扶手上,闭上眼睛,戴着带有棉套的耳机,听刺激方案设计的问题。每个受试者做 10 组实验,每组实验要听 6 个问题,每个问题听完后根据问题内容默答“是”或者“不是”,每两个问题之间间隔 3s。脑电采集的通道数为 32,采样率为 1000Hz。与脑电放大器配套的实验数据采集软件的界面(NT9200 系列数字脑电分析系统)见下图 2.9,实验采集到的脑电信号见下图 2.10。第 2 章 脑机接口原理和实验信号采集图 2.9 NT9200 系列数字脑电分析系统图 2.10 实验采集到的脑电信号第 2 章 脑机接口原理和实验信号采集2.4 本章小结本章介绍了脑机接口的原理和实验信号的采集。首先介绍了脑机接口的基本原理;然后介绍了脑电信号的采集和分类,重点介绍了 P30

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报