1、摘 要电冰箱作为应用较为普及的家用电器,近年来,随着微电子技术、传感器技术以及控制理论的发展,电冰箱具有温度模糊控制、智能化霜、故障自诊功能,同时还具有控制精度高、性能可靠、省电等优点,并能达到高质量食品保鲜的目的,是电冰箱发展的主要方向。电冰箱控制的主要任务就是保持箱内食品最佳温度,达到食品保鲜的目的。由于冰箱内温度受多种不确定因素影响,如放入冰箱中物品的温度、热容量以及物品的充满率、开门的频繁程度等,冰箱内的温度场的数学模型很难建立,因此无法用传统的控制方法实现精确控制。本文采用模糊控制技术可以方便地提高控制精度,配以电子温度检测,对压缩机的工作状态进行调节,达到精确控温和节能的目的。通过
2、变频控制可以使冷冻室的温度控制更加合理。当冷冻室需要制冷量比较大的时候,可以通过变频调控,使电机高速转动,就加强压缩机制冷;同理,当冷冻室制冷量比较小时,则使电机转速慢一些。就降低压缩机制冷。通过半导体制冷使冷藏室的温度控制更加精确。在冷藏室需要制冷的时候可以启动半导体制冷,而不用启动压缩机,这样一方面避免了压缩机的频繁开启,另一方面也节约了能量,同时也保证了冷藏室的温度更加准确。为了提高冰箱的性能,软件上还采取了自学习功能、故障运行自恢复功能、维护自检功能和容错技术等抗干扰设计。该系统具有控制精度高、性能可靠、省电等特点。关键词:模糊控制论;冰箱;单片处理机;自学习AbstractIn re
3、cent years, refrigerator as a widespread family electronics, they have advantages of perfect accuracy、high performance、saving electricity and keeping fresh food of high quality, while development of micro-electronics technology, senor technology and control theory. It is the main orientation of deve
4、loping refrigerators.The control of the refrigerator aims to keep the food furthest temperature. But there are many factors effect the refrigerator temperature, such as food temperature, thermal capacity, full or not and frequency of opening door. So its difficult of building the model of the refrig
5、erator. So it cant realize precision control using traditional control method.The Paper improves the control precision utilizing fuzzy control technology. And the frequency conversion has been designed in order to avoid starting up compressor frequently which makes the electrical machinery work acco
6、rding to requirement. So the refrigeration of compressor will be more effective. Safe adopts the semiconductor and compressor to refrigerate at the same time. In the normal situation the safe refrigerates with refrigeration of the freezer when the freezer needs refrigeration, the system starts the m
7、echanism of compressing. The safe can reach the refrigeration result at the same time. When the freezer does not need refrigeration, the semiconductor will be used alone-The result controlled like this can make the safe achieve the goal of controlling alone basically.For the performance of refrigera
8、tor ,the self-learning, self-repairing, self-checking and fault tolerant technique ale used in software designing, This system has the advantages of high control precision reliable performance and saving electric energy.Keywords:Fuzzy control theory; Refrigerator; Single chip compute; Self-learning目
9、 录1 绪论 11.1 课题背景及意义 11.2 智能冰箱系统概述 11.3 方案论证 22 系统介绍 32.1 概述 32.1.1 电冰箱的热负荷 32.1.2 电冰箱的系统结构 32.2 系统设计与功能简介 43 系统数学模型与控制理论 73.1 概述 73.2 模糊智能控制理论 73.2.1 模糊智能控制的发展 73.2.2 智能模糊控制的基本原理 73.2.3 模糊控制算法 103.2.4 模糊智能控制在电冰箱系统中的实现 163.2.5 模糊控制应用于冰箱上的必要性、可行性 174.1 智能冰箱的功能 184.2 冷冻室制冷的实现方法 194.3 冷藏室制冷的实现方法 204.4 模
10、糊化霜的实现 225 硬件系统 235.1 系统概述 235.2 系统电路设计 255.2.1 按键输入的实现 255.2.2 蜂鸣的实现 255.2.3 温度采集的实现 265.2.4 显示电路的实现 275.2.5 变频调速的实现 286 系统软件 326.1 系统软 件概述 326.2 件总体结构 327 结 论 34致 谢 35参考文献 36湖北理工学院毕业设计(论文)01 绪论1.1课题背景及意义 众所周知,电冰箱是现代家庭中必不可少的家用电器。而目前市售冰箱大多采用传统的机械式温控,控制精度差,功能单一,控制方式简单难以满足现代冰箱发展的要求。随着经济的发展和人民生活水平的进一步提
11、高,人们对多功能化的发展要求越来越高。单片机技术和电子技术的高速发展,使得箱内温度控制可随冷藏室和冷冻室的不同而分别设定,定时自动除霜、白动制冰、省电等诸多功能和要求得以实现。特别是模糊控制技术在家用电器中的应用日趋成熟,为电冰箱向智能化方向发展提供了有利技术支持 1。在电冰箱的控制中,温度是主要的控制对象,控制的好就有显著的节能效果。但冰箱内要受诸如环境温度的高低、冰箱本身的容积、冰箱中食物的多少、以及食物的种类和性质、存放物品的初始温度、散热特性及其热容量、物品的充满率及开门的频繁程度等控制。冰箱内的温度场分布极不均匀,要想建立电冰箱温度变化的精确数学模型是很困难的,因此采用模糊控制技术才
12、能达到最佳的控制效果 2。1.2智能冰箱系统概述智能控制技术的发展,正在改变着人们的生活方式,更加舒适、更加可靠的家用电器可日益提高人们的生活水平。单片机是智能家电的核心单元,因为单片机是嵌入在家用电器中,没有自己独立的外壳,通常称为嵌入式系统,如今嵌入式系统无处不在,正推动着二十一世纪一场新的产业革命。为了适应智能控制技术的发展,单片机在它诞生以来的二十多年内,发生了迅猛的变化,从四位机发展到六十四位机,架构也在发生变化。电冰箱是白色家电中最有代表性的,在中国,电冰箱在家庭中的普及率很高,而且,制造技术也非常成熟,关键技术处于国际先进水平,部分技术还领先于国际同行。家用电冰箱的模糊控制技术、
13、多段变温技术、自动制冰技术、湖北理工学院毕业设计(论文)1瞄准冷却技术、自动开门技术、变频技术、信息化网络化技术等都不同程度的折射出智能控制技术在家用电器中的广泛应用前景 2。1.3 方案论证经典控制理论,对于解决线性定常系统的控制问题是很有效的。然而,经典控制理论对于非线性的时变系统难以奏效。无论采用经典控制理论还是现代控制理论设计一个控制系统,都需要事先知道被控对象精确的数学模型,然后根据数学模型以及给定的性能指标,选择适当的控制规律,进行控制系统设计。然而,许爹隋况下被控对象的精确数学模型很难建立。模糊控制是一种以模糊集台论、模糊语言变量以及模糊逻辑推理为数学基础的新型计算机控制方法。从
14、线性控制与非线性控制角度分类,模糊控制是一种非线性控制。模糊控制的方法模仿人的思维方式和人的检测经验,用电脑来代替人脑实施有效的控制。模糊控制则是依赖于被控系统的物理特性。特理特性的提取要靠人的直觉和经验,这些物理特性在人脑中是用自然语言来抽象成一系列概念和规则的。用这种方法可以把人的经验形式化并引入控制过程,再运用比较严密的数学处理过程,实现模期推理,进行判断决策,以达到令人满意的控制效果。单片机是一种十分特别的集成电路,它不但内部含有控制器、运算器、存储器,还含有大量的接口部件。这种特点使得它成了一个十分有用的控制器件。单片机用于执行模糊控制有以下几点:(1)可以接受数字量、模拟量和开关量
15、;(2)可以输出数字量、模拟量和开关量;(3)模糊化方便;(4)反模糊化方便;(5)模糊推理的执行较容易。在控制芯片的选择上,市场上有许许多多的嵌入式控制芯片,本设计采用的是8051单片机,它是市面上常见的嵌入式芯片单它是一种8位的单芯片微控制器,属于MCS-51单芯片的一种,由英特尔公司于1981年制造 4。相比市面上其他单片机,8051市场份额占有率大,产品成熟可靠,在单一的封装中提供很多功能(包括CPU,RAM,ROM,输入输出,中断,时钟等)有非常湖北理工学院毕业设计(论文)2多的周边硬件和软件资源,为我们的硬件结构架设和软件设计提供了非常多的参考,有利于我完成这次设计,所以我选择它作
16、为核心控制器。综上所述,我选择80C51单片机作为核心控制器,采用模糊控制方法完成系统的设计。2 系统介绍2.1 概述2.1.1 电冰箱的热负荷家用电冰箱的制冷系统有压缩机、冷凝器、干燥器、节流毛细管、蒸发器等构成,如下图 2.1 所示图 2.1 制冷系统流程简图压缩机排气经冰箱冷暖气(在冰箱背面或侧面)冷凝后进入干燥过滤器,去除水分和杂质,在通过毛细管节流。节流后的气液混合物先流入冷冻室和冷藏室,农蒸发器中吸收热量蒸发,使冷冻室和冷藏室的温度达到设定要求从蒸发器流出的制冷剂流入压缩机 5。2.1.2 电冰箱的系统结构本文的研究对象是大容积、多功能无氟电冰箱,这种电冰箱一般是多门分体结构、一套
17、制冷装置,多通道风冷式。箱体结构如图 2.2 所示。控制温度的湖北理工学院毕业设计(论文)3手段主要是压缩机的开停,循环风扇的转速、通风道门的开启程度等。图 2.2 电冰箱的结构图2.2 系统设计与功能简介传感器组主要由冷冻室、冷藏室、冰温室及环境温度等传感器组成,通过温度及风门状态检测和信号处理、根据模糊推理决策,控制压缩机及相应风门、风扇、电机、制冰机等运转模式。d / d t乘法器模糊推论1模糊推论2模糊推论3d / d t冷冻室温度门状态检测室内温度检测食品温度压缩机开停时间修正湖北理工学院毕业设计(论文)4图 2.3 冷冻室温度控制模糊推理框图冷冻室温度控制模糊推理框图 2.3 所示
18、。风冷式电冰箱的制冷系统设置在冷冻室,由压缩机出来的高温、高压液态制冷剂,经冷凝器冷却后,被送到设置在冷冻室四周的蒸发器中蒸发为气态,同时吸收外界的热量,达到制冷的目的。压缩机的开停决定制冷的程度。d / d t乘法器模糊推论1模糊推论2模糊推论3d / d t冷冻室温度门状态检测室内温度检测食品温度风机转速风机开启度图 2.4 冷藏室温度控制模糊推理框图图 2.4 是冷藏室温度控制模糊推理图在冷藏室和蔬菜室中不设蒸发器,而且将冷冻室的冷气经过公用风道,由风机传送给各温区,用各区的风门控制该区的温度变化。冷冻室和其它温区的温度控制匹配问题用模糊控制器协调 6。冷冻室和冷藏室的温度控制方案基本是
19、相同的,只是控制对象不同。前者控制压缩机开停,后者调节风机风门。现在以冷冻室为例,说明温度控制系统模糊控制器的设计问题。模糊控制电冰箱不仅要考虑到冷冻室温度的恒温调节,同时也要考虑到冷冻室温度与食品温度未必相同这一因素。最终应使食品温度保持在某一范围内,从而达到保险的目的,这是它与传统 PID 恒温调节系统追求的控制目标间的差别。食品放进冷冻室即开始降温,经过一段时间,冷冻室的温度可能已降到给定值,但这时食品温度温度还没达到保鲜温度的要求,因此,这时压缩机关断以后,冷冻室的温度开始回升,当回升到给定值时,理应将压缩机再次投入运行。但实际上,这时食品的温度由于热惯性并不能与冷冻室空间温度一直,从
20、节能的观点出发,应延时启动压缩机,延时多长,也与放入食品的热容量有关。以上分析说明,最后一次投入的食品的热容量(初始温度和重量)在以后湖北理工学院毕业设计(论文)5的压缩机控制决策的调整中起着重要最用。但投入视屏的热容量是无法检测,不能指望用户输入,而必须利用模糊推理和传感技术 7。投入的食品热容量的检测是在食品放入冷冻室并关门后 5min 内进行的。一般情况下,冷冻室的温度都在-18左右,当食品存入以后冷冻室的温度急骤上升,上升的绝对值和变化率,决定于放入食品的温度和热容量,温度的变化曲线如图 2.5 所示。从图 2.5(b)可以看出,在食品重量相等的情况下,食品温度愈高()温度升高的变化率
21、愈大,制冷压缩机应愈早投入运行。图321T2.5(a)说明,放在食品温度相同的情况下,食品质量越大( ) ,321Q其温度上升变化率愈大,制冷压缩机启动后温度的下降愈缓。通过实验摸索了这一规律,并且建立了文中所述的模糊推理关系。同时应该指出,存放食品时,动作的缓慢,门开启时间的长短,以及室温的高低,对冷冻室的温度也有相当大的影响,在判断食品温度时应该予以考虑 8。图 2.5 存入食品后冷冻室温度的变化根据以上分析,设计了冷冻室温度模糊控制推理框图。初投食品后,根据冷冻室温度及其变化率,应用模糊推理1判断食品的温度及热容量。根据该次投放食品时开门次数和持续时间及当时室温,应用模糊推理2确定修正系数,前两者通过乘法器得到该次投放食品的热容量。这种判断是一次性的,只对该次投入食品以后的温度控制有效。判定的食品热容量,作为确定压缩机控制决策的模糊推理3的输入。它的另一个输入是冷冻室给定温度与实际温度的差值,差值为零是压缩机开停的理论界面,必须根据投入食品的热容量,应用模糊推理3确定开停时间的修正值。必须指出,这种控制过程是一次性的,以每次投入食品为周期,但控制策略是一贯的,推理法则是一致的。对于原来存放在冷冻室的食品,纳入箱体热惯性考虑,不参与控制过程,引起的误差在工程上是允许的。