1、1八年级数学上册整式的乘除练习幂的运算习题精选一、选择题:1下列计算中,错误的是( )Am nm2n+1 = m3n+1 B(a m1)2 = a 2m2C(a 2b)n = a2nbn D(3x 2)3 = 9x6 2若 xa = 3,x b = 5,则 xa+b的值为( )A8 B15 C35 D533计算(c 2)n(cn+1)2等于( )Ac 4n+2 Bc Cc Dc 3n+44与( 2a 2)35的值相等的是( )A 2 5a30 B 2 15a 30 C( 2a 2)15 D( 2a) 305下列计算正确的是( )A(xy) 3 = xy3 B(2xy) 3 = 6x3y3C(3
2、x 2)3 = 27x5 D(a 2b)n = a2nbn6下列各式错误的是( )A(2 3)4 = 212 B( 2a) 3 = 8a3C(2mn 2)4 = 16m4n8 D(3ab) 2 = 6a2b27下列各式计算中,错误的是( )A(m 6)6 = m36 B(a 4)m = (a 2m)2Cx 2n = (xn)2 Dx 2n = (x2)n二、解答题:1已知 32n+1+32n = 324,试求 n 的值2已知 2 m = 3,4 n = 2,8 k = 5,求 8 m+2n+k的值3计算:x 2(x3)24 4如果 am = 5,a n = 7,求 a 2m+n的值答案:一、选
3、择题:1、D 说明:m nm2n+1 = mn+2n+1 = m3n+1,A 中计算正确;(a m1)2 = a2(m1) = a 2m2, B 中计算正确; (a 2b)n = (a2)nbn = a2nbn,C中计算正确;(3x 2)3 = (3)3(x2)3 = 27x6,D 中计算错误;所以答案为 D2、B 说明:因为 xa = 3,x b = 5,所以 xa+b = xaxb = 35 = 15,答案为 B3、A 说明:(c 2)n(cn+1)2 = c2nc2(n+1) = c2nc2n+2 = c2n+2n+2 = c4n+2,所以答案为 A4、C 说明:( 2a 2)35 =
4、( 2a2)35 = ( 2a2)15,所以答案为 C5、D 说明:(xy) 3 = x3y3,A 错;(2xy) 3 = 23x3y3 = 8x3y3,B 错;(3x 2)3 = (3)3(x2)3 = 27x6,C 错;(a 2b)n = (a2)nbn = a2nbn,D 正确,答案为 D6、C 说明:(2 3)4 = 234 = 212,A 中式子正确;( 2a) 3 = (2) 3a3 = 8a3,B 中式子正确;(3ab) 2 = 32a2b2 = 9a2b2,C 中式子错误;(2mn2)4 = 24m4(n2)4 = 16m4n8,D 中式子正确,所以答案为 C7、D 说明:(m
5、 6)6 = m66 = m36,A 计算正确;(a 4)m = a 4m,(a 2m)2 = a 4m,B 计算正确;(xn)2 = x2n,C 计算正确;当 n 为偶数时,(x 2)n = (x2)n = x2n;当 n 为奇数时,(x 2)n = x2n,所以 D 不正确,答案为 D二、解答题:1解:由 32n+1+32n = 324 得 332n+32n = 324,即 432n = 324,3 2n = 81 = 34,2n = 4,n = 22解析:因为 2 m = 3,4 n = 2,8 k = 5所以 8 m+2n+k = 8m82n8k = (23)m(82)n8k = 2
6、3m(43)n8k = ( 2m)3(4n)38k = 3 3235 = 2785 = 10803答案:x 32解:x 2(x3)24 = (x2x32)4 = (x 2x6)4 = (x2+6)4 = (x 8)4 = x84 = x 324答案:a 2m+n = 175解:因为 am = 5,a n = 7,所以 a 2m+n = a 2man = (am)2an = (5)27 = 257 = 1752整式的乘法习题精选选择题:1对于式子( x2)n xn+3(x0),以下判断正确的是( )Ax0 时其值为正 Bxx35 的解集为 x9(x2)(x+3)的正整数解答案:x = 1、2、3
7、、4说明:原不等式变形为9x2169x2+9x54,9xN BMN CMN D不能确定7对于任何整数 m,多项式( 4m+5) 29 都能( )A被 8 整除 B被 m 整除C被(m1)整除 D被(2n1)整除8将3x 2n6xn分解因式,结果是( )A3x n(xn+2) B3(x 2n+2xn) C3x n(x2+2) D3(x 2n2xn) 9下列变形中,是正确的因式分解的是( )A 0.09m 2 n2 = ( 0.03m+ )( 0.03m)Bx 210 = x291 = (x+3)(x3)1Cx 4x2 = (x2+x)(x2x) D(x+a) 2(xa)2 = 4ax10多项式(
8、x+yz)(x y+z)(y+zx)(zxy)的公因式是( )Ax+yz Bx y+z Cy+z x D不存在11已知 x 为任意有理数,则多项式x1 x2的值( )A一定为负数 B不可能为正数C一定为正数 D可能为正数或负数或零二、解答题:分解因式:(1)(ab+b) 2(a+b)2(2)(a 2x2)24ax(xa)2(3)7x n+114xn+7xn1(n 为不小于 1 的整数)答案:一、选择题:1B 说明:右边进行整式乘法后得16x481 = (2x)481,所以 n 应为 4,答案为 B2B 说明:因为 9x212xy+m 是两数和的平方式,所以可设 9x212xy+m = (ax+
9、by)2,则有 9x212xy+m = a2x2+2abxy+b2y2,即 a2 = 9,2ab = 12,b 2y2 = m;得到 a = 3,b = 2;或 a = 3,b = 2;此时 b2 = 4,因此,m = b 2y2 = 4y2,答案为 B3D 说明:先运用完全平方公式,a 4 2a2b2+b4 = (a2b2)2,再运用两数和的平方公式,7两数分别是 a2、b 2,则有(a 2b2)2 = (a+b)2(ab)2,在这里,注意因式分解要分解到不能分解为止;答案为 D4C 说明:(a+b) 24(a2b2)+4(ab)2 = (a+b)22(a+b)2(ab)+2(ab)2 =
10、a+b2(ab)2 = (3ba)2;所以答案为 C5B 说明:( )2001+( )2000 = ()2000( )+1 = ( )2000 = ( )2001 = ( )2001,所以答案为 B6B 说明:因为 MN = x2+y22xy = (xy)20,所以 MN7A 说明:( 4m+5) 29 = ( 4m+5+3)( 4m+53) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1)8A9D 说明:选项 A,0.09 = 0.3 2,则 0.09m2 n2 = ( 0.3m+ n)( 0.3m n),所以A 错;选项 B 的右边不是乘积的形式;选项 C 右边(x2+x)
11、(x2x)可继续分解为 x2(x+1)(x1);所以答案为 D10A 说明:本题的关键是符号的变化:zxy = (x+yz),而 xy+zy+zx,同时xy+z(y+z x),所以公因式为 x+yz11B 说明:x1 x2 = (1x+ x2) = (1 x)20,即多项式 x1 x2的值为非正数,正确答案应该是 B二、解答题:(1) 答案:a(b1)(ab+2b+a)说明:(ab+b) 2(a+b)2 = (ab+b+a+b)(ab+bab) = (ab+2b+a)(aba) = a(b1)(ab+2b+a)(2) 答案:(xa) 4说明:(a 2x2)24ax(xa)2 = (a+x)(ax) 24ax(xa)2 = (a+x) 2(ax)24ax(xa)2 = (xa) 2(a+x)24ax = (xa) 2(a2+2ax+x24ax) = (xa) 2(xa)2 = (xa)4(3) 答案:7x n1(x1)2说明:原式 = 7x n1 x27xn1 2x+7xn1 = 7xn1(x22x+1) = 7xn1(x1)2