收藏 分享(赏)

层序地层学的名词英语解释.doc

上传人:yjrm16270 文档编号:6023725 上传时间:2019-03-24 格式:DOC 页数:5 大小:39KB
下载 相关 举报
层序地层学的名词英语解释.doc_第1页
第1页 / 共5页
层序地层学的名词英语解释.doc_第2页
第2页 / 共5页
层序地层学的名词英语解释.doc_第3页
第3页 / 共5页
层序地层学的名词英语解释.doc_第4页
第4页 / 共5页
层序地层学的名词英语解释.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、层序地层学的名词英语解释0 Glossary Accommodation. Another term for relative sea-level. Can be thought of as the space in which sediments can fill, defined at its base by the top of the lithosphere and at its top by the ocean surface. Basinward Shift in Facies. When viewed in cross-section, a shifting of all fac

2、ies towards the center of a basin. Note that this is a lateral shift in facies, such that in vertical succession, a basinward shift in facies is characterized by a shift to shallow facies (and not a vertical shift to more basinward or deeper-water facies). Bed. Layer of sedimentary rocks or sediment

3、s bounded above and below by bedding surfaces. Bedding surfaces are produced during periods of nondeposition or abrupt changes in depositional conditions, including erosion. Bedding surfaces are synchronous when traced laterally; therefore, beds are time-stratigraphic units. See Campbell, 1967 (Sedi

4、mentology 8:7-26) for more information. Bedset. Two or more superposed beds characterized by the same composition, texture, and sedimentary structures. Thus, a bedset forms the record of deposition in an environment characterized by a certain set of depositional processes. In this way, bedsets are w

5、hat define sedimentary facies. Equivalent to McKee and Weirs coset, as applied to cross-stratification. See Campbell, 1967 (Sedimentology 8:7-26) for more information. Condensation. Slow net rates of sediment accumulation. Stratigraphic condensation can occur not only through a cessation in the supp

6、ly of sediment at the site of accumulation, but also in cases where the supply of sediment to a site is balanced by the rate of removal of sediment from that site. Where net sediment accumulation rates are slow, a variety of unusual sedimentologic features may form, including burrowed horizons, accu

7、mulations of shells, authigenic minerals (such as phosphate, pyrite, siderite, glauconite, etc.), early cementation and hardgrounds, and enrichment in normally rare sedimentary components, such as volcanic ash and micrometeorites. Conformity. Bedding surface separating younger from older strata, alo

8、ng which there is no evidence of subaerial or submarine erosion or nondeposition and along which there is no evidence of a significant hiatus. Unconformities (sequence boundaries) and flooding surfaces (parasequence boundary) will pass laterally into correlative conformities, most commonly in deeper

9、 marine sediments. Eustatic Sea Level. Global sea level, which changes in response to changes in the volume of ocean water and the volume of ocean basins. Flooding Surface. Shortened term for a marine flooding surface. Highstand Systems Tract. Systems tract overlying a maximum flooding surface, over

10、lain by a sequence boundary, and characterized by an aggradational to progradational parasequence set. High-Frequency Cycle. A term applied to a cycle of fourth order or higher, that is, having a period of less than 1 million years. Parasequences and sequences can each be considered high-frequency c

11、ycles when their period is less than 1 million years. Isostatic Subsidence. Vertical movements of the lithosphere as a result of increased weight on the lithosphere from sediments, water, or ice. Isostatic subsidence is a fraction of the thickness of accumulated material. For example, 100 meters of

12、sediment will drive about 33 meters of subsidence (or less, depending on the rigidity of the lithosphere). Lowstand Systems Tract. Systems tract overlying a type 1 sequence boundary, overlain by a transgressive surface, and characterized by a progradational to aggradational parasequence set. Marine

13、Flooding Surface. Surface separating younger from older strata, across which there is evidence of an abrupt increase in water depth. Surface may also display evidence of minor submarine erosion. Forms in response to an increase in water depth. Maximum Flooding Surface. Marine flooding surface separa

14、ting the underlying transgressive systems tract from the overlying highstand systems tract. This surface also marks the deepest water facies within a sequence. This flooding surface lies at the turnaround from retrogradational to progradational parasequence stacking, although this turnaround may be

15、gradational and characterized by aggradational stacking. In this case, a single surface defining the point of maximum flooding may not be identifiable, and a maximum flooding zone is recognized instead. The maximum flooding surface commonly, but not always, displays evidence of condensation or slow

16、deposition, such as burrowing, hardgrounds, mineralization, and fossil accumulations. Because other flooding surfaces can have evidence of condensation (in some cases, more than the maximum flooding surface), condensation alone should not be used to define the maximum flooding surface. Meter-Scale C

17、ycle. A term applied to a cycle with a thickness of a couple of meters or less. Parasequences and sequences can each be considered meter-scale cycles when they are thinner than a couple of meters. Parasequence. Relatively conformable (that is, containing no major unconformities), genetically related

18、 succession of beds or bedsets bounded by marine-flooding surfaces or their correlative surfaces. Parasequences are typically shallowing-upward cycles. Parasequence Boundary. A marine flooding surface. Parasequence Set. Succession of genetically related parasequences that form a distinctive stacking

19、 pattern, and typically bounded by major marine flooding surfaces and their correlative surfaces. Parasequence set boundaries may coincide with sequence boundaries in some cases. See progradational, aggradational and retrogradational parasequence sets. Peritidal. All of those depositional environmen

20、ts associated with tidal flats, including those ranging from the highest spring tides to somewhat below the lowest tides. Relative Sea Level. The local sum of global sea level and tectonic subsidence. Locally, a rise in eustatic sea level and an increase in subsidence rates will have the same effect

21、 on accommodation. Likewise, a fall in eustatic sea level and tectonic uplift will have the same effect on accommodation. Because of the extreme difficulty in teasing apart the effects of tectonic subsidence and eustatic sea level in regional or local studies, sequence stratigraphy now generally emp

22、hasizes relative changes in sea level, as opposed to its earlier emphasis on eustatic sea level. Sequence. Relatively conformable (that is, containing no major unconformities), genetically related succession of strata bounded by unconformities or their correlative conformities. Sequence Boundary. Fo

23、rm in response to relative falls in sea level. Sequence Stratigraphy. The study of genetically related facies within a framework of chronostratigraphically significant surfaces. Shelf Margin Systems Tract. Systems tract overlying a type 2 sequence boundary, overlain by a transgressive surface, and c

24、haracterized by a progradational to aggradational parasequence set. Without regional seismic control, most shelf margin systems tracts may be unrecognizable as such and may be inadvertently lumped with the underlying highstand systems tract as part of one uninterrupted progradational parasequence se

25、t. If this occurs, the overlying transgressive surface may be erroneously inferred to also be a type 1 sequence boundary. Systems Tract. Linkage of contemporaneous depositional systems, which are three-dimensional assemblages of lithofacies. For example, a systems tract might consist of fluvial, del

26、taic, and hemipelagic depositional systems. Systems tracts are defined by their position within sequences and by the stacking pattern of successive parasequences. Each sequence consists of three systems tract in a particular order. For a type 1 sequence, these are the lowstand, transgressive, and hi

27、ghstand systems tracts. For a type 2 sequence, these are the shelf margin, transgressive, and highstand systems tracts. Tectonic Subsidence. Vertical movements of the lithosphere, in the absence of any effects from changes in the weight of overlying sediments or water. Also called driving subsidence

28、. Tectonic subsidence is generated primarily by cooling, stretching, loading (by thrust sheets, for example), and lateral compression of the lithosphere. Transgressive Surface. Marine flooding surface separating the underlying lowstand systems tract from the overlying transgressive systems tract. Ty

29、pically, this is the first major flooding surface following the lowstand systems tract. In depositionally updip areas, the transgressive surface is commonly merged with the sequence boundary, with all of the time represented by the missing lowstand systems tract contained within the unconformity. Th

30、e transgressive surface, like all of the major flooding surfaces within the transgressive systems tract, may display evidence of stratigraphic condensation or slow net deposition, such as burrowed surfaces, hardgrounds, mineralization, and fossil accumulations. Transgressive Systems Tract. Systems t

31、ract overlying a transgressive surface, overlain by a maximum flooding surface, and characterized by a retrogradational parasequence set. Type 1 Sequence Boundary. Characterized by subaerial exposure and associated erosion from downcutting streams, a basinward shift in facies, a downward shift in co

32、astal onlap, and onlap of overlying strata. Forms when the rate of sea-level fall exceeds the rate of subsidence at the depositional shoreline break (usually at base level or at sea level). Note that this means that if such changes can be observed in outcrop and the underlying strata are marine, the

33、n the boundary is a type 1 sequence boundary. Type 2 Sequence Boundary. Characterized by subaerial exposure and a downward shift in onlap landward of the depositional shoreline break (usually at base level or at sea level). Overlying strata onlap this surface. Type 2 sequence boundaries lack subaeri

34、al erosion associated with the downcutting of streams and lack a basinward shift in facies. Forms when the rate of sea-level fall is less than the rate of subsidence at the depositional shoreline break. Note that the lack of a basinward shift in facies and the lack of a relative fall in sea level at

35、 the depositional shoreline break means that there are essentially no criteria by which to recognize a type 2 sequence boundary in outcrop. Unconformity. Surface separating younger from older strata, along which there is evidence of subaerial erosional truncation or subaerial exposure or correlative

36、 submarine erosion in some areas, indicating a significant hiatus. Forms in response to a relative fall in sea level. Note that this is a much more restrictive definition of unconformity than is commonly used or used in earlier works on sequence stratigraphy (e.g., Mitchum, 1977). Walthers Law state

37、s that “.only those facies and facies areas can be superimposed, without a break, that can be observed beside each other at the present time“ (Middleton translation from German). At a Waltherian contact, one facies passes gradationally into an overlying facies, and those two facies represent sedimen

38、tary environments that were originally adjacent to one another. Water Depth. The distance between the sediment surface and the ocean surface. Water depth is reflected in sedimentary facies. A very large number of studies that purport to describe sea-level changes (both eustatic and relative) are act

39、ually only describing changes in water depth. The effects of isostatic subsidence and compaction must be removed from water depth to calculate relative sea level. This is typically done through backstripping. To calculate eustatic sea level, the rate of tectonic subsidence must then be subtracted from the relative sea-level term.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 外语学习 > 英语学习

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报