1、分类号 密级:机密硕 士 学 位 论 文PECVD SiOx-SiNx 叠层钝化膜题 目:及等离子体氧化的研究The Study of PECVD SiOx-SiNxStack Passivation Films and英文并列题目:Plasma Oxidation研 究 生:专 业: 光学工程研 究 方 向: 光电器件与材料导 师:指导小组成员:学位授予日期:答辩委员会主席: 王利光独 创 性 声 明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含本人为获得江南大学或
2、其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。签 名: 日 期:关于论文使用授权的说明本学位论文作者完全了解江南大学有关保留、使用学位论文的规定:江南大学有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅,可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、 缩印或扫描等复制手段保存、汇编学位论文,并且本人电子文档的内容和纸质论文的内容相一致。保密的学位论文在解密后也遵守此规定。签 名: 导师签名:日 期:摘 要I摘 要随着晶体硅太阳电池技术的发展,良好的表面钝化成为制备高效电池必不
3、可少的条件。早期的硅太阳电池钝化技术主要集中在研究热生长的 SiO2 钝化膜上,其表面钝化效果非常好,但是长时间的高温氧化过程对于质量比较差的多晶硅片,会增加体内的位错密度以及激发出新的缺陷,导致体少子寿命显著降低,从而使电池性能下降。减反射膜制备技术也是太阳电池生产工艺中的关键技术之一,较低的反射率能使更多的光线进入电池中,增加太阳电池的电流输出。目前几乎所有的晶体硅光伏制造商都是采用氮化硅(Si 3N4)作为减反钝化膜,在 PV工业中氮化硅膜是仅有的一种可以在一步工艺步骤下同时实现减反射、表面钝化和体钝化的材料,并且氮化硅膜硬度高、结构致密、化学性能稳定。但是,氮化硅与硅材料的附着能力差,
4、Si-Si 3N4 结构界面应力大且界面态密度高,会造成不稳定,影响表面的钝化效果。SiO2-Si3N4 叠层钝化结构把二氧化硅与硅之间良好的界面性质同氮化硅膜优良的化学性质结合了起来,形成稳定的钝化结构。在这种钝化结构中,SiO 2 不但起到一个缓冲和中介的作用,也作为优良的表面钝化膜,其厚度为 615nm,在同减反射涂层结合时它足够薄而且不干扰光学系统,对保证有效的表面钝化而言其厚度也足够。本文研究了 PECVD 法制备的 SiOx-SiNx 叠层钝化膜和先经等离子氧化处理再沉积SiNx 膜(本文中表示为 Plasma Oxide-SiNx 膜)对多晶硅电池发射极钝化性能的影响。首先使用工
5、业型 Direct-PECVD 设备,采用 SiH4 和 N2O 制备了 SiOx 薄膜,系统地研究了不同参数对 SiOx 膜沉积特性的影响,这些参数包括射频功率、沉积气压、气体总流量、气体流量比、沉积温度,通过比较 SiOx 膜在这些条件下的沉积速率、折射率、均匀性和腐蚀速率,得到了 SiOx 膜的最佳沉积条件,在该条件下薄膜的沉积速率稳定,均匀性良好、结构致密。等离子体氧化的条件除了 SiH4 流量为 0 外,其余参数均采用SiOx 膜的最佳沉积条件,经等离子体氧化处理后的硅片表面会形成一层氧化膜,但由于这层膜非常薄,因此对膜本身的性质并没有过多研究,而主要研究了其对硅片钝化性能的影响。S
6、iNx 膜的 PECVD 制作工艺已经十分成熟,因此在本文的研究中,SiNx膜直接采用了生产线上的成熟工艺进行制备。在多晶硅电池发射极上分别制备了 SiOx-SiNx 叠层膜和 Plasma Oxide-SiNx 膜,并比较了它们与 SiNx 单层膜的减反和钝化效果,结果显示 Plasma Oxide-SiNx 膜和 SiNx膜的反射率基本相同,而 SiOx-SiNx 叠层膜在短波段的反射率要比 SiNx 膜稍高,但是Plasma Oxide-SiNx 膜和 SiOx-SiNx 叠层膜均比 SiNx 单层膜具有更好的钝化效果。最后分别采用 SiOx-SiNx 叠层膜、Plasma Oxide-
7、SiNx 膜和 SiNx 单层膜三种钝化结构制备了太阳电池,并比较了三者之间的电性能。结果显示采用 SiOx-SiNx 叠层膜的电池其短路电流和开路电压均比采用 SiNx 单层膜的电池要高,最终的转换效率也提高了 0.25 个百分点。而采用 Plasma Oxide-SiNx 膜的电池,虽然其短路电流和开路电压也摘 要II比采用 SiNx 单层膜的电池要高,但由于填充因子太低,其最终的转换效率并没有采用SiNx 单层膜的电池高。关键词:多晶硅;太阳电池;PECVD;氧化硅;氮化硅;减反;钝化AbstractIIIAbstractWith the development of crystalli
8、ne silicon solar cell technology, good surface passivation becomes essential for preparation of high efficiency solar cells. In early period, thermal oxidation of SiO2 film is the main purpose of passivation technology of silicon solar cell. The passivation effect of SiO2 film is very good, but the
9、long time of high temperature oxidation process will increase the dislocation density and inspire new defects in poor quality mc-Si wafers. These will decrease the lifetime of minority carriers significantly, and make the electrical properties of solar cells become worse. Preparation of anti-reflect
10、ion film is one of the key process in solar cell production. Lower reflectivity can make more light enter the cell, and increase the output current of solar cells.Currently, almost all the crystalline silicon PV manufacturers use silicon nitride (Si3N4) as anti-reflection and passivation film. In th
11、e PV industry, silicon nitride film is the only material can simultaneously implement the role of anti-reflection, surface passivation and bulk passivation in one process step. Silicon nitride films have high hardness, large dielectric constant, compact structure, and stable chemical properties. How
12、ever, silicon nitride is incompatible with silicon in nature, and has poor adhesion with silicon. Si-Si3N4 interface has large stress and high interface states density. This will make the interface be unstable, and affect the surface passivation effect.SiO2-Si3N4 stack passivation films form a stabl
13、e passivation structure, which combine the good interface properties between silicon dioxide and silicon with the good chemical properties of silicon nitride. In this passivation structure, SiO2 film is not only a buffer layer, but also an excellent surface passivation film. Its thickness is between
14、 615nm. It is enough for surface passivation, and will not interfere the optical system of anti-reflection film.In this paper, we studied the passivation effects of PECVD SiOx-SiNx satck films, and SiNx film after plasma oxidation (expressed as Plasma Oxide-SiNx films in this paper) on mc-Si solar c
15、ell emitter. First, we investigated the properties of SiOx films deposited by Direct-PECVD with SiH4 and N2O. SiOx films were deposited in different parameters. These parameters include RF power, deposition pressure, gas flow rate, gas flow ratio, and deposition temperature. The properties of film i
16、nclude deposition rate, refractive index, uniformity and corrosion rate. From these, we obtained the best deposition condition by comparing the properties. Under this deposition condition, the SiOx films have stable deposition rate, good uniformity and compact structure. The parameters of plasma oxi
17、dation are the same with the best deposition condition of SiOx films, except that the gas flow of SiH4 is 0. The surface of silicon will form a layer of oxide film after plasma oxidation. However, the thickness of this oxide film is very thin, so we mainly studied the passivation effects, but not th
18、e properties of the oxide film. Since the technology of PECVD SiNx is very mature, in the study of this paper, SiNx was fabricated using the mature technology in the production line. We fabricated SiOx-SiNx stack films and Plasma Oxide-SiNx films on mc-Si emitter, and compared them with SiNx single
19、layer in reflectivity and passivation performance. The AbstractIVresults show that the reflectivity of Plasma Oxide-SiNx films and SiNx film are almost the same, but the reflectivity of SiOx-SiNx films are slightly higher than (that of) SiNx film at the short wavelength range. However, both SiOx-SiN
20、x stack films and Plasma Oxide-SiNx films have better passivation effects than SiNx single film. Finally we fabricated solar cells with SiOx-SiNx stack films, Plasma Oxide-SiNx films and SiNx single film respectively, and the electrical properties between the three kinds of passibation structure wer
21、e compared. The results show that the short circuit current and open circuit voltage of solar cells with SiOx-SiNx stack films are higher than those with SiNx single film, and the conversion efficiency is increased by 0.25%( absolute value). The short circuit current and open circuit voltage of sola
22、r cells with Plasma Oxide-SiNx films are higher than those with SiNx single films, but the fill factor is too small, so the conversion efficiency is lower than that of the cells with SiNx single films.Keywords: multi-crystalline silicon; solar cell; PECVD; SiOx; SiNx; anti-reflection; passivation目 录
23、I目 录摘 要 .IAbstract.III第一章 绪论 .11.1 能源危机 .11.2 太阳能光伏发电 .11.3 晶体硅太阳电池的发展状况 .21.3.1 单晶硅太阳能电池 .21.3.2 多晶硅太阳能电池 .41.4 太阳电池的表面钝化研究 .41.4.1 热氧化钝化 .51.4.2 PECVD 氮化硅钝化 .51.4.3 其它的钝化技术 .61.5 本课题的研究内容和创新点 .71.5.1 本课题的研究内容 .71.5.2 本课题的研究意义和创新点 .71.6 本文的组织架构 .8第二章 太阳电池的基本理论及减反钝化原理 .92.1 太阳电池的基本理论 .92.1.1 晶体硅太阳电池
24、的基本结构 .92.1.2 太阳电池的原理 .92.1.3 太阳电池的性能参数 .102.1.4 太阳电池的等效电路 .122.2 太阳电池的减反射原理 .142.2.1 硅片表面的光反射 .142.2.2 薄膜干涉 .152.2.3 减反射膜的厚度和折射率 .152.3 太阳电池的复合理论 .172.3.1 辐射复合 .172.3.2 俄歇复合 .182.3.3 缺陷复合 .192.3.4 表面复合 .212.3.5 发射结区复合 .222.4 太阳电池的钝化原理与方法 .232.4.1 钝化原理 .232.4.2 钝化方法 .24目 录II2.4.3 氢钝化原理 .262.5 本章小结 .
25、28第三章 实验设备与实验过程 .293.1 实验设备 .293.1.1 PECVD 沉积设备 .293.1.2 快速热处理设备 .313.2 测试设备 .313.2.1 椭偏仪 .313.2.2 反射率测试仪 .323.2.3 少子寿命测试仪 .323.2.4 量子效率测试仪 .333.2.5 太阳电池效率测试仪 .343.3 实验过程 .343.3.1 PECVD 沉积 SiOx 薄膜的特性研究 .343.3.2 SiOx-SiNx 叠层膜的制作 .373.3.3 等离子体氧化研究 .383.3.4 快速热处理研究 .383.3.5 太阳电池的制作 .383.4 本章小节 .39第四章 实验结果与分析 .414.1 PECVD 沉积 SiOx 薄膜的研究 .414.1.1 功率 .414.1.2 气压 .424.1.3 气体总流量 .434.1.4 N2O/SiH4 流量比 .454.1.5 温度 .464.1.6 SiOx 膜最佳沉积条件的确定 .474.2 不同钝化结构的减反钝化性能对比 .494.2.1 反射率 .494.2.2 少子寿命 .504.3 太阳电池的电性能 .524.3.1 量子效率 .524.3.2 伏安特性 .524.4 本章小节 .53第五章 总结与展望 .555.1 总结 .555.1 展望 .55