1、不像其他科学,统计从来不打算使 自己完美无缺,统计意味着你永远 不需要确定无疑。Gudmund R.Iversen,第 7 章 参数估计,7.1 参数估计的一般问题 7.2 一个总体参数的区间估计 7.3 两个总体参数的区间估计 7.4 样本容量的确定,参数估计在统计方法中的地位,统计推断的过程,7.1 参数估计的一般问题,7.1.1 估计量与估计值 7.1.2 点估计与区间估计 7.1.3 评价估计量的标准,估计量与估计值,估计量:用于估计总体参数的随机变量 如样本均值,样本比例、样本方差等 例如: 样本均值就是总体均值 的一个估计量 参数用 表示,估计量用 表示 估计值:估计参数时计算出来
2、的统计量的具体值 如果样本均值 x =80,则80就是的估计值,估计量与估计值 (estimator & estimated value),点估计与区间估计,参数估计的方法,点估计 (point estimate),用样本的估计量的某个取值直接作为总体参数的估计值 例如:用样本均值直接作为总体均值的估计;用两个样本均值之差直接作为总体均值之差的估计 无法给出估计值接近总体参数程度的信息 虽然在重复抽样条件下,点估计的均值可望等于总体真值,但由于样本是随机的,抽出一个具体的样本得到的估计值很可能不同于总体真值 一个点估计量的可靠性是由它的抽样标准误差来衡量的,这表明一个具体的点估计值无法给出估计
3、的可靠性的度量,区间估计 (interval estimate),在点估计的基础上,给出总体参数估计的一个区间范围,该区间由样本统计量加减估计误差而得到 根据样本统计量的抽样分布能够对样本统计量与总体参数的接近程度给出一个概率度量 比如,某班级平均分数在7585之间,置信水平是95%,区间估计的图示,将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称为置信水平 表示为 (1 - 为是总体参数未在区间内的比例 常用的置信水平值有 99%, 95%, 90% 相应的 为0.01,0.05,0.10,置信水平 (confidence level),由样本统计量所构造的总体参数
4、的估计区间称为置信区间 统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间 用一个具体的样本所构造的区间是一个特定的区间,我们无法知道这个样本所产生的区间是否包含总体参数的真值 我们只能是希望这个区间是大量包含总体参数真值的区间中的一个,但它也可能是少数几个不包含参数真值的区间中的一个 总体参数以一定的概率落在这一区间的表述是错误的,置信区间 (confidence interval),置信区间 (95%的置信区间),重复构造出的20个置信区间,点估计值,评价估计量的标准,无偏性 (unbiasedness),无偏性:估计量抽样分布的数学期望等于被估计的总体参数,有效
5、性 (efficiency),有效性:对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效,一致性 (consistency),一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数,7.2 一个总体参数的区间估计,7.2.1 总体均值的区间估计 7.2.2 总体比例的区间估计 7.2.3 总体方差的区间估计,一个总体参数的区间估计,总体均值的区间估计 (正态总体、已知,或非正态总体、大样本),总体均值的区间估计 (大样本),1. 假定条件 总体服从正态分布,且方差() 已知 如果不是正态分布,可由正态分布来近似 (n 30) 使用正态分布统计量 z,总体均值 在1- 置信水
6、平下的置信区间为,总体均值的区间估计 (例题分析),【 例 】一家食品生产企业以生产袋装食品为主,为对产量质量进行监测,企业质检部门经常要进行抽检,以分析每袋重量是否符合要求。现从某天生产的一批食品中随机抽取了25袋,测得每袋重量(单位:g)如下表所示。已知产品重量的分布服从正态分布,且总体标准差为10g。试估计该批产品平均重量的置信区间,置信水平为95%,总体均值的区间估计 (例题分析),解:已知N(,102),n=25, 1- = 95%,z/2=1.96。根据样本数据计算得: 。由于是正态总体,且方差已知。总体均值在1-置信水平下的置信区间为,该食品平均重量的置信区间为101.44g10
7、9.28g,统计函数CONFIDENCE,总体均值的区间估计 (正态总体、未知、小样本),总体均值的区间估计 (小样本),1. 假定条件 总体服从正态分布,但方差() 未知 小样本 (n 30) 使用 t 分布统计量,总体均值 在1-置信水平下的置信区间为,t 分布, t 分布是类似正态分布的一种对称分布,它通常要比正态分布平坦和分散。一个特定的分布依赖于称之为自由度的参数。随着自由度的增大,分布也逐渐趋于正态分布,t 分布 (用Excel生成t分布的临界值表),将分布自由度df的值输入到工作表的A列 将右尾概率的取值输入到第1行 在B2单元格输入公式“=TINV(B$1*$A2)”,然后将其
8、向下、向右复制即可得, 用Excel生成t分布的临界值表,t 分布 (用Excel绘制t分布图),第1步:在工作表的第1列A2:A62输入一个等差数列,初始值为“-3”,步长为“0.1”,终值为“3” 第2步:在单元格C1输入t分布的自由度(如“20”) 第3步:在单元格B2输入公式“=TDIST(-A2,$C$1,1)”,并将其复制到B3:B32区域,在B33输入公式“=TDIST(A33,$C$1,1)”并将其复制到B34:B62区域 第4步:在单元格C3输入公“=(B3-B2)*10”,并将其复制到C4:C31区域,在单元格C32输入公式“=(B32-B33)*10”并将其复制到C33:
9、C61区域 第5步:将A2:A62作为横坐标,C2:C62作为纵坐标,根据“图表向导”绘制折线图, 用Excel绘制t分布图,t 分布 (用Excel绘制t分布图),总体均值的区间估计 (例题分析),【例】已知某种灯泡的寿命服从正态分布,现从一批灯泡中随机抽取16只,测得其使用寿命(单位:h)如下。建立该批灯泡平均使用寿命95%的置信区间,总体均值的区间估计 (例题分析),解:已知N(,2),n=16, 1- = 95%,t/2=2.131根据样本数据计算得: ,总体均值在1-置信水平下的置信区间为,该种灯泡平均使用寿命的置信区间为1476.8h1503.2h,总体方差的区间估计,总体方差的区
10、间估计,1. 估计一个总体的方差或标准差 2. 假设总体服从正态分布 总体方差 2 的点估计量为s2,且,4. 总体方差在1- 置信水平下的置信区间为,总体方差的区间估计 (图示),总体方差的区间估计 (例题分析),【例】一家食品生产企业以生产袋装食品为主,现从某天生产的一批食品中随机抽取了25袋,测得每袋重量如下表所示。已知产品重量的分布服从正态分布。以95%的置信水平建立该种食品重量方差的置信区间,总体方差的区间估计 (例题分析),解:已知n25,1-95% ,根据样本数据计算得s2 =93.21 2置信度为95%的置信区间为,该企业生产的食品总体重量标准差的的置信区 间为7.54g13.
11、43g,一个总体参数的区间估计 (小结),未来观察值的预测区间估计,未来观察值的预测区间估计,预测随机变量未来的观察值,并希望求出各某个未来观察值的取值范围,这个范围就是对某个未来观察值的预测区间估计 以7.3为例,估计一个新灯泡使用寿命的区间 预测误差的期望为, ,预测误差的方差为未来观察值经标准化后服从标准正态分布,当用样本方差s2代替总体方差2后,则服从t分布 新观察值95%的预测区间为,未来观察值的预测区间估计 (例题分析),【例】利用例7.3的数据,假定你要购买一只新的灯,以95%的置信水平建立该只灯泡的预测区间,149054.4=(1435.6,1544.4),该只新灯泡使用寿命9
12、5%的预测区间为1435.6h1544.4h时之间。与总体均值的置信区间(1476.8,1503.2)相比,新灯泡的预测区间要长得多,解:根据已知结果得,7.3 两个总体参数的区间估计,7.3.1 两个总体均值之差的区间估计 7.3.2 两个总体比例之差的区间估计 7.3.3 两个总体方差比的区间估计,两个总体参数的区间估计,两个总体均值之差的区间估计 (独立大样本),两个总体均值之差的估计 (大样本),1. 假定条件 两个总体都服从正态分布,1 , 2已知 若不是正态分布, 可以用正态分布来近似(n130和n230) 两个样本是独立的随机样本 使用正态分布统计量 z,两个总体均值之差的估计
13、(大样本),1. 1, 2已知时,两个总体均值之差1-2在1- 置信水平下的置信区间为,1 , 2未知时,两个总体均值之差1-2在1- 置信水平下的置信区间为,两个总体均值之差的估计 (例题分析),【例】某地区教育管理部门想估计两所中学的学生高考时的英语平均分数之差,为此在两所中学独立抽取两个随机样本,有关数据如右表所示 。建立两所中学高考英语平均分数之差95%的置信区间,English,两个总体均值之差的估计 (例题分析),解: 两个总体均值之差在1-置信水平下的置信区间为,两所中学高考英语平均分数之差的置信区间为 5.03分10.97分,两个总体均值之差的区间估计 (独立小样本),两个总体
14、均值之差的估计 (小样本: 12= 22 ),1. 假定条件 两个总体都服从正态分布 两个总体方差未知但相等:1=2 两个独立的小样本(n130和n230) 总体方差的合并估计量,估计量x1-x2的抽样标准差,两个总体均值之差的估计 (小样本: 12=22 ),两个样本均值之差的标准化,两个总体均值之差1-2在1- 置信水平下的置信区间为,两个总体均值之差的估计 (例题分析),【例】为估计两种方法组装产品所需时间的差异,分别对两种不同的组装方法各随机安排12名工人,每个工人组装一件产品所需的时间(单位:min) 如下表。假定两种方法组装产品的时间服从正态分布,且方差相等。试以95%的置信水平建
15、立两种方法组装产品所需平均时间差值的置信区间,两个总体均值之差的估计 (例题分析),解: 根据样本数据计算得合并估计量为,两种方法组装产品所需平均时间之差的置信区间为 0.14min7.26min,两个总体均值之差的估计 (小样本: 12 22 ),1. 假定条件 两个总体都服从正态分布 两个总体方差未知且不相等:12 两个独立的小样本(n130和n230) 使用统计量,两个总体均值之差的估计 (小样本: 1222 ),两个总体均值之差1-2在1- 置信水平下的置信区间为,两个总体均值之差的估计 (例题分析),【例】沿用前例。假定第一种方法随机安排12名工人,第二种方法随机安排8名工人,即n1
16、=12,n2=8 ,所得的有关数据如表。假定两种方法组装产品的时间服从正态分布,且方差不相等。以95%的置信水平建立两种方法组装产品所需平均时间差值的置信区间,两个总体均值之差的估计 (例题分析),解: 根据样本数据计算得自由度为,两种方法组装产品所需平均时间之差的置信区间为 0.192min9.058min,两个总体均值之差的区间估计 (匹配样本),两个总体均值之差的估计 (匹配大样本),假定条件 两个匹配的大样本(n1 30和n2 30) 两个总体各观察值的配对差服从正态分布 两个总体均值之差d =1-2在1- 置信水平下的置信区间为,两个总体均值之差的估计 (匹配小样本),假定条件 两个
17、匹配的小样本(n1 30和n2 30) 两个总体各观察值的配对差服从正态分布 两个总体均值之差d=1-2在1- 置信水平下的置信区间为,两个总体均值之差的估计 (例题分析),【例】由10名学生组成一个随机样本,让他们分别采用A和B两套试卷进行测试,结果如右表 。试建立两种试卷分数之差d=1-2 95%的置信区间,STATISTICS,两个总体均值之差的估计 (例题分析),解: 根据样本数据计算得,两种试卷所产生的分数之差的置信区间为6.33分 15.67分,两个总体方差比的区间估计,两个总体方差比的区间估计,1. 比较两个总体的方差比 用两个样本的方差比来判断 如果S12/ S22接近于1,说
18、明两个总体方差很接近 如果S12/ S22远离1,说明两个总体方差之间存在差异 总体方差比在1-置信水平下的置信区间为,两个总体方差比的区间估计 (图示),两个总体方差比的区间估计 (例题分析),【例】为了研究男女学生在生活费支出(单位:元)上的差异,在某大学各随机抽取25名男学生和25名女学生,得到下面的结果男学生:女学生:试以90%置信水平估计男女学生生活费支出方差比的置信区间,两个总体方差比的区间估计 (例题分析),解:根据自由度 n1=25-1=24 ,n2=25-1=24,查得 F/2(24)=1.98, F1-/2(24)=1/1.98=0.50512 /22置信度为90%的置信区
19、间为,男女学生生活费支出方差比的置信区间为0.471.84,两个总体参数的区间估计 (小结),7.4 样本容量的确定,7.4.1 估计总体均值时样本容量的确定 7.4.2 估计总体比例时样本容量的确定 7.4.3 估计两个总体均值之差时样本容量的确定 7.4.4 估计两个总体比例之差时样本容量的确定,估计总体均值时样本容量的确定,估计总体均值时样本容量n为样本容量n与总体方差 2、边际误差E、可靠性系数Z或t之间的关系为 与总体方差成正比 与边际误差的平方成反比 与可靠性系数成正比 样本容量的圆整法则:当计算出的样本容量不是整数时,将小数点后面的数值一律进位成整数,如24.68取25,24.3
20、2也取25等等,估计总体均值时样本容量的确定,其中:,估计总体均值时样本容量的确定 (例题分析),【例】拥有工商管理学士学位的大学毕业生年薪的标准差大约为2000元,假定想要估计年薪95%的置信区间,希望边际误差为400元,应抽取多大的样本容量?,估计总体均值时样本容量的确定 (例题分析),解: 已知 =2000,E=400, 1-=95%, z/2=1.96应抽取的样本容量为,即应抽取97人作为样本,估计总体比例时样本容量的确定,根据比例区间估计公式可得样本容量n为,估计总体比例时样本容量的确定,E的取值一般小于0.1 未知时,可取使方差最大值0.5,其中:,估计总体比例时样本容量的确定 (
21、例题分析),【例】根据以往的生产统计,某种产品的合格率约为90%,现要求边际误差为5%,在求95%的置信区间时,应抽取多少个产品作为样本?,解:已知=90%,=0.05, z/2=1.96,E=5%,应抽取的样本容量为,应抽取139个产品作为样本,估计两个总体均值之差时 样本容量的确定,设n1和n2为来自两个总体的样本,并假定n1=n2 根据均值之差的区间估计公式可得两个样本的容量n为,估计两个总体均值之差时 样本容量的确定,其中:,估计两个总体均值之差时样本容量的确定 (例题分析),【例】一所中学的教务处想要估计试验班和普通班考试成绩平均分数差值的置信区间。要求置信水平为95%,预先估计两个
22、班考试分数的方差分别为:试验班12=90 ,普通班 22=120 。如果要求估计的误差范围(边际误差)不超过5分,在两个班应分别抽取多少名学生进行调查?,English,估计两个总体均值之差时样本容量的确定 (例题分析),解: 已知12=90,22=120,E=5, 1-=95%, z/2=1.96,即应抽取33人作为样本,估计两个总体比例之差时 样本容量的确定,设n1和n2为来自两个总体的样本,并假定n1=n2 根据比例之差的区间估计公式可得两个样本的容量n为,估计两个总体比例之差时 样本容量的确定,其中:,估计两个总体比例之差时样本容量的确定 (例题分析),【例】一家瓶装饮料制造商想要估计顾客对一种新型饮料认知的广告效果。他在广告前和广告后分别从市场营销区各抽选一个消费者随机样本,并询问这些消费者是否听说过这种新型饮料。这位制造商想以10%的误差范围和95%的置信水平估计广告前后知道该新型饮料消费者的比例之差,他抽取的两个样本分别应包括多少人?(假定两个样本容量相等),估计两个总体比例之差时样本容量的确定 (例题分析),解: E=10%, 1-=95%,z/2=1.96,由于没有的信息,用0.5代替,即应抽取193位消费者作为样本,本章小结,参数估计的一般问题 一个总体参数的区间估计 两个总体参数的区间估计 样本容量的确定,结 束,THANKS,