收藏 分享(赏)

求概率的方法教案.doc

上传人:无敌 文档编号:586370 上传时间:2018-04-13 格式:DOC 页数:8 大小:77KB
下载 相关 举报
求概率的方法教案.doc_第1页
第1页 / 共8页
求概率的方法教案.doc_第2页
第2页 / 共8页
求概率的方法教案.doc_第3页
第3页 / 共8页
求概率的方法教案.doc_第4页
第4页 / 共8页
求概率的方法教案.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、求概率的方法教案 周口店中学教学目标:1.经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。2通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的概率。3能运用树状图和列表法计算简单事件发生的概率。教学重点:运用树状图和列表法计算事件发生的概率。教学难点:树状图和列表法的运用方法。教学过程:问题引入:抛一枚硬币,正面朝上可能性多大?反面朝上的可能性呢?如果同时抛两枚硬币呢?有几种情况(由此引入课题,然后要求学生做实验来验证他们的猜想)想一想:对于前面的游戏,假设抛掷的是 A、B 两枚硬币,落地后会出现哪些可能的结果?每种结果出现的可能性相同吗?B

2、币可能出现同时可能出现A 币可能出现正面朝上 反面朝上正面朝上 (正,正) (正,反)反面朝上 (反,正) (反,反)上面用列表的方法列举所有可能出现的结果共有 4 种:(正,正) 、 (正,反) 、 (反,正) 、 (反,反)而且每种结果出现的可能性相同,反以两枚正面都朝上的结果有 1 个所以 P(两枚正面都朝上)= (学生思考为什么?)4除列表外,也可以用列举法A 币 B 币 A、B 币正 (正,正)正反 (正,反)开始正 (反,正)反 反 (反,反)上面是用画树状图的方法列举所有可能出现的结果总结列举法求概率的一般步骤:1、 列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发

3、生的可能性是否相等;2、 如果都相等,再确定所有可能出现的结果个数和其中出现所求事件 A 的结果个数m;3、 用公式计算所求事件 A 的概率,即nmP)(例 1:在五张大小相同的卡片上,分别写有数字 0、1、1、2、2,把写有 1、2 的两张卡片放在左边,把另外写有 0、1、2 的三张卡片放在右边,并且写有数字的面都朝下(1) 分别从左右两边都随机各取一张卡片,求这两张卡片上的数字之各为奇数的概率;(2) 将右边的三张卡片随机排成一行,求翻开后组成一个三位数的概率。左边 右边1 2 0 1 2 数字朝上数字朝下随堂练习:P 161,1、2 题课堂小结:这节课学习了通过列表法或树状图来求得事件的

4、概率。作业:P 167,2、3 题课题:求概率的方法教学目标:1.经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。2通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的概率。3能运用树状图和列表法计算简单事件发生的概率。教学重点:运用树状图和列表法计算事件发生的概率。教学难点:树状图和列表法的运用方法。教学过程:复习引入:提出问题:1、求概率有哪些方法?2、求概率的一般步骤为什么?做一做:例 2:口袋里有四枚除颜色外都相同的棋子,其中有三枚是红色的,一枚是黑色的。从中随机同时摸出两枚,求摸出的两枚棋子颜色不同的概率。分析:同时摸两枚也可以看成是不

5、放回两次摸棋子一枚 另一枚 两枚红 2 (红 1,红 2)红 1 红 3 (红 1,红 3)黑 (红 1,黑 )红 3 (红 2,红 3)红 2 黑 (红 2,黑 )红 3 黑 (红 3,黑 )同时摸出两枚棋子的所有可能结果有几个?每个结果发生的可能性都相同吗?其中出现颜色不同的结果有几个?概率为多少? 练一练:P162 练习 1例 3:口袋里有三枚除颜色外都相同的棋子,其中有二枚是红色的,一枚是黑色的。从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色。求两次摸出棋子颜色不同的概率。提问,此题和例 1 相比有何不同?若第一枚是黑色,第二枚还可能是黑色吗?试用列表法或画树状图的

6、方法解此题练一练:P162 练习 2课堂小结:这节课运用列表法或画树状图的方法来求事件的概率。课后作业:书本 167 页:4,5课题:求概率的方法议一议:如图,在一张半径为 2a 的圆形纸片上画一个半径为 a的同心圆,贴在木板上做投镖游戏。假设镖投在圆形纸片上每个点的可能性都相等,你能列出镖投在圆形纸片上所有可能投中的点吗?如果不能,怎样求镖投在小圆内的概率?分析:我们不能列出镖投在圆形纸片上所有可能投中的点,但是可以计算所有可能投中的圆形纸片上的面积,以及所求投中的小圆的面积 ,所24aG 2ag以, 414( 2ap 镖 投 在 小 圆 内 )2a a像这样,在一个平面区域内的每个点上,事

7、件发生的可能性都是相等,如果所有可能发生的区域面积为 G,所求事件 A 发生的区域面积为 g,那么例 4 射击的靶环由 10 个等距的同心圆组成,如图最小圆的半径及相邻两圆的半径差都为 r,由外向内相邻两圆之间(含外圆)的部分一次为 1 环、2 环9 环区域,最小圆及内部为 10 环区域。如果射在靶环上每个点的可能性都相等,求射击一次命中 10 环、1 环的概率分别是多大?分析:只需计算所有可能射在靶环上的区域面积和 10GAp)(环、1 环的区域面积。解:因为大圆半径为 10r,所有可能射在靶环区域的面积为 ,其中 10 环区域的面积为 ,1 环的内210r 2r圆半径为 9r,其面积为 ,

8、则 1 环区域的面积为281r- = ,所以,2r289练习:如图,地面上画一个半径为 a 的正方形。若小球投在圆圈内每个点的可能性都相等,求小球投在正方形内的概率。.109109)( ,1)10( 22rpr环命 中 环命 中a课题:用频率估计教学目标:1、经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。2、通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的概率。教学重点: 通过实验估计随机事件发生的概率的方法 教学难点: 领会当实验次数很大时,可以用一个事件发生的频率来估计这一事件发生的概率 教学过程:一、问题引入:抛掷一枚啤酒瓶盖,落地后

9、会出现哪些结果,每个结果发生的可能性相等吗?如果不相等,还能用前面的公式计算概率吗?做一做:1、实验一:每人都抛掷同一瓶盖,掷 5 次,记下落地后盖面朝上的次数,四个人一组,统计本组 20 次实验中盖面朝上的次数和频率(频率精确到 0.0001)(1) 将实验结果填入下表:累计顺序 1组 1-2组 1-3组 1-4组 1-5组 1-6组 1-7组 1-8组 1-9组 1-10组实验次数 20 40 60 80 100 120 140 160 180 200盖面朝上频率盖面朝下频率(2) 根据上表中的数据绘制频率折线图(3) 从实验数据中可以发现什么规律?(4) 频率随着实验次数的增加,稳定于什么值?(5) 瓶盖朝上的概率是多少?结论:一般地,在大量重复实验时,如果一个事件发生的概率总是在某个常数附近波动,就把这个常数作为这个事件发生的概率。有时也直接用事件发生的概率或频率的平均值作为其概率的估计值我们可以通过多次实验,用一个事件发生的频率来估计这一事件发生的概率.四、随堂练习P166 页 1 题 课本 P168 页 8 题五、作业目标检测 P86 1、2 题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报